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Chapter 1 

INTRODUCTION 

The evaluation of one or more specific definite integrals often 

constitutes a crucial segment of a scientific or engineering research 

project. As technical research becomes more complex, the integrals 

encount~red tend to be correspondingly more complicated, and so more 

resistant to treatment by standard mathematical methods. In particular, 

scientists and engjneers are increasingly being confronted with the task 

of evaluating multi-dimensional integrals, an enterprise which often 

overtaxes even highly refined, computer-oriented nutnerical quadrature 

techniques. 

In the late 1940's a novel technique for numerically ~:!valuating 

integrals was suggested by E. Fermi, J. von Neumann and S. Ulam. This 

technique, which was termed ''Monte Carlo" because of its rel i.ance upon 

random numbers, did not win immediate widespread acceptance in the scienti-

fie community. Mob~ scientists apparently just ignored Monte Carlo, 

probably because it seemed rather foolish to suppose that one could gain 

useful knowledge about a well-defined and pe1·fectly deterministic inte-

gral by playing some contrived game of chance. And of those workers 

who took the trouble to inform themselves more fully on the subject, 

w~ny found that Monte Carlo, as it was understood and applied in the 

1950's, simply was not as efficient for their particular problems as were 

the more conventional numerical methods. 



' . ! 

To be sure, the ·ionte Carlo method has its limitations, and it is 

by no means an appropriate tool for many problems. However, owing to an 

increased understanding of and improvement in Monte Carlo techniques, as 

well as the development of faster digital computers, tha class of integrals 

which are ~amenable to Monte Carlo is fai=ly large, and includes many 

of the unwieldy multi-dtmensional integrals which scientists and engineers 

often encounter in their research. For this reason the Monte Carlo approach 

undoubtedly deserves a wider recognition in the scientific and engineering 

community than it presently ha~. 

There exists a fairly extensive body of literature on Monte Carlo. 

Currently the most comprehensive work is a book by Hammersley and Handscomb 

(Ref. 1); a less ambitious but somewhat mor~ readable work is an article 

by Fluendy (Ref. 2). However, in thi~;; w:l.ter's opinion the "standard work" 

on Monte Carlo has yet to be written. This is probably because all of its 

variations and possibilities have not yet been brought into a completely 

understood and totally unified picture by any one practioner of the art. 

In addition, it is usually easier to do Monte Carlo in some specific 

instance than it is to write (or read) about it in general terms. Un-

fortunately though, it is also easy to do Monte Carlo inefficiently--or 

worse still, incorrectly--so a good understanding of the generalities 

is rather essential. 

This writer has used Monte Carlo as a computational tool in two areas 

of physics, namely, elementary particle physics (Ref. 3) and classical 

kinetic theory (Ref. 4). This limited experience has by no means rendered 
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the author an expert in all facets of Monte Carlo; however, it has sug-

gested a pedagogical approach to the subject which ls perhaps more trans-

parent to scientists than are the standard presentations, which usually 

tend to be rather deeply couched in the technical language of statistics. 

The a 1m of this monograph, therefore, is ~ to prc·.ride a definitive 

and comprehensive treatment of all aspects of Monte Carlo; rather, its 

purpose is to present the basic principles of the conventional Monte Carlo 

method for estimating integrals, in a manner that will convey an "in-

tu!tive feeling" for how and why the method works. An intuitive rapport 

with the Monte Carlo approach is important, because this enables one to 

more easily idencify which features of a given integral will give rise 

to difficulties, as well as which featutes can be exploited for a gain 

in computing efficiency. More often than not, this kind of insight is 

what spells the difference between success and failure in obtaining a 

sufficiently accurate numerical estimate for a given integral. 

From the viewpoint of a scientist, the basic idea behind Monte Carlo 

can probably be best explained through a famill.c:- example from statistical 

mechanics: Suppose we have a gas composed of very many molecules of mass 

min thermal equilibrium at absolute temperature T. If f(v) is any function 

of the molecular speed v (e.g., f(v) could be the molecular ~inetic energy 

mv 2 /2, or the molecular speed v itself), then the average (f) of f(v) for 

these gas molecules may be defined as 

N»l (1.1) 

3 
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where v1, vz, ••• , vN are the speeds of N randomly chosen molecules. 

Now, we can evaluate (f) without actually polling N randomly selected 

molecules by making use of the Maxwell-Boltzmann Law. According to 

this law, the probability that any molecule will have a speed between 

v and v+dv is 

(1.2) 

where a=m/2kT, k being Boltzmann's constant. It follows that the contri-

bution to the sum on the right of (1.1) coming from molecules with speeds 

between v and v+dv will be NP(v)dvxf(v). Summing (integrating) over all 

dv-intervals thus gives the quantity ~if(vi), and (1.1) yields 

"" 
(f) "" _{ f(v)P(v)dv 

0 

(1.3) 

The point here is that, in statistical mechanics, we evaluate averages 

of the kind on the risht side of (1.1) by actually computing definite 

integrals of the kind on the right side of (1.3). 

The basic idea behind Monte Carlo is simply to turn this procedure 

around. Thus, suppose that for some unrelated reason we wanted to evaluate 

the integral on the right side of (1.3), where P(v) is given by (1.2) 

with a specific numerical value for a, and where f(v) is some given 

function which is so complicated that we are unable to carry out the 

integration analytically. Now, jf we could somehow obtain a set of 

4 
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numbers v1, vl, ••• , v~ that mimic the speeds of N randomly chosen gas 

molecules in thermal equilibrium (with m and T values appropriate to the 

given value of a), then we could evidently evaluate the integral in 

question simply by averaging f (v) over these N v cvalues. This would in 

fact constitute a ''Monte Carlo evaluation" of the integral: In Monte 

Carlo, we evaluate definite integrals of the kind on the right side of 

(1.3) by actually computing averages of the kind on the right side of 

(1.1). 

From the foregoing rough description of the Monte Carlo approach, 

several questions naturally arise. The first and most obvious is, can 

we obtain the required vi-values without actually measuring the speeds of 

randomly selecteci gas molecules? More generally, can we obtain vi-values 

appropriate to P functions different from the one given in (1.2)? These 

matters will be addressed in Chapter 2, where we discuss in some detail 

how sets of random points are specified and how they can be constructed. 

The second question concerns the accuracy of a Monte Carlo calculation. 

If the values v1, v2, ••• , v are the speeds of N randomly chosen gas 
N 

molecules, then we surely cannot expect (1.1) to yield a unique result. 

In fact, (1.1) - (1.3) are strictly valid only in the limit N ~ oo, We 

therefore need to know what sort of uncertainty in our result will be 

occasioned by calculating (1.1) with N finite. This question will be 

discussed in detail in Chapter 3, where we shall develop the Monte Carlo 

method for estimating definit~ integrals in a much more careful way than 

we did above. 

5 

-"""------·-----



Finally, there is the following question: Once the uncertainty in 

a given Monte Carlo calculation has been determined, is there any way 

of modifying the procedure so as to reduce this uncertainty? One intu­

itively obvious way of doing this would be to simply increase N, but 

clearly the time availaole for computation will impose an effective upper 

limit on the size of N. It turns out that, depending on the specifics 

of the inteual in q<~estion, one usually can find ways of reducing the un­

certainty ~ithout significantly increasing the computing time. In Chapter 4 

we shall describe some of these so-called "variance reducing" techniques. 

We mentioned that this report will concentrate on the "conventional" 

Monte Carlo method of evnluating integrals. As implied, there is a some­

what unconventional Monte Carlo method; this alternate approach makes use 

of the mathematical concept of a ''Markov chain11 or a ''Markovian random 

walk", and has met with considerable success in certain areas of statistical 

mechanics. It is not our purpose in this report to discuss in detail the 

Markov chain Monte Carlo method for calculating multi-din1ensional integrals; 

however, in order to give the reader some idea of what is involved, as well 

as some guidance to the literature, we have included a brief appendix on 

this subject (Appendix I) at the end of this report. 

We shall try in this report to avoid as much as possible the technicat 

jargon of statistics, but we shall nevertheless attempt to maintain a 

reasonable level of precision and rigor. W~ assume at the outset that the 

reader is acquainted with che common (albeit not universal) view of 

"probnbility" as the ratio of the number of trials with a favorable outcome 
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to the total number of trials, taken in the ltmit of infinitely many 

trials. From this notion one easily deduces the addition and multipli-

cation laws for probabilities: 

•Addition Law: If Pl and P2 are the probabilities for the occurrence 

of two mutually exclusive events 1 and 2. then the probability for the 

occurrence of either 1 ~ 2 in any one trial is p1+p2, 

•Multiplication ~: If Pl is the probability for the occurrence of 

event 1, and P21 the probability for the occurrence of event 2 when 

event 1 occurred on the previous trial, then the probability for the 

occurrence of ~ 1 !2! ~ 2 in any two successive trials is 

Pl"P21• 

These and other primitive notions about probabilities will be invoked 

frequently throughout our discussion of the Monte Carlo procedure. 

7 
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Chapter 2 

SETS OF RANDOM POINTS 

2-1. Specifying Sets of Random Numbers 

All Monte Carlo applications involve the use of at least one !!t 

of random numbers {xi} distributed according to so~e predetermined 

pro~ability density function P(x). By these tPrms we mean an inexhaust-

ible set of real numbers from which we may "draw11 s~quential elements 

.... ' suc..h that 

P(x)dx - probability that any xi will lie between 

x and x+dx. (2.1) 

The numbers in {xi} are considered ''random" because each draw can produce 

any real number x, provided P(x)+O, and it is not possible to say before-

hand what the drawn number will be. However, to say that the numbers 

in {xi} are "random" is nQ.t to say that they are "unbiased". Indeed, the 

numbers are quite definitely biased in the sense that, in the limit of 

infinitely many draws, a normalized i~equency histogram of the xi's 

will coincide with the curve P(x)-versus-x. 

A set of random numbers {x1} is specified as completely as is possible 

by its probability density function P(x). However, it is often convenient 

to work with its probability distribution function F{x), which is defined 

in terms of P(x) by 

X 

F(x) = J P(x')dx' (2.2) 
-m 
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In light of (2.1), (2.2) says that F(x) is the "sum" of the probabilities 

for xi to fall inside each infinitesimal interval between ~ and x; 

by the addition law of probabilities, F(x) may thus be interpreted as the 

probability !h!i !.r will be less than !.· 

Since xi will surely be less than ®, we have the follow1ng normaliza­

tion property: 

JP(x')dx' - F(®) = 1 (2. 3) 
-o:> 

Another property of P(x), which derives directly from its definition 

(2.1), is that it never be negative: 

P(x) ~ 0 for all x (2.4) 

It follows from (2.2)-(2.4) that the distribution function F(x) rises 

from the value 0 at x•-® to the value 1 at x=+oo in a non-decreasing way. 

Indeed, any non-negative, single-valued function of x which bounds 

a unit area with the x-axis can serve as a probability density function, 

defining a set of random numbers. Similarly, any differentiable fun~tion 

of x which rises from the value 0 at x•..oo to the value 1 at x=+oo with-

out ever decreasing can serve as a probability distribution function, 

defining a set of random numbers. 

The distinctio.t between a probability density function and a proba-

bility distribution function is quite important in Monte Carlo work.t 

+ 
The function P(v) in (1.2), or its closely related Cartesian counterpart, 

is usually referred to as the "Maxwell-Boltzmann distribution fuuction"; 

this is a rathe~: unfortunate designation since it is obviously a probability 

density function and not a probability distribution function. 

9 
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F(x) is the integral curve of P(x), and conversely P(x) is the deriva­

tive curve of F(x). A plot of P(x) and F(x) for a hypothetical set of 

random numbers {xi} is shown in Fig. 1, where we have tried to illustrate 

the properties and relationships developed above. If P(x) is zero below 

x=a and above x=b, then F(x) is zero below x•a and unity above x•b. The 

total area under the P(x) curve is unity, while the area under the P(x) 

curve between x and x+dx is numerically equal to the probability that a 

number drawn from {xi} will lie between x and x+dx. The ordinate at x 

on the F(x) plot is the probability that a number drawn from {xi} will 

be less than x. Regions on the x-axis of high likelihood are distinguished 

by high P(x)-values and steeply rising F(x)-v&lues; regions of low like­

lihood are distinguished by low P(x)-values and nearly constant F(x)-values. 

Since F(x) is a probability, it is always a pure number between 0 and 1. 

P(x} is ~a probability; however, P(x)dx is, so P(x} always has dimensions 

of 1/x. 

F(x) is sometimes referred to as the "cumulative distribution function". 

We shall hereafter refer to P(x) and F(x) more simply as the "dznsity 

function" and "distribution function" respectively. 

Suppose a given set of random numbers {x
1

} with density function 

Pdx) is .:.£:!:lsformed into a new set of random numbers {y
1

} by applying to 

each element of {xi} the transformation 

y = f(x) (2.5a) 

What will be the density function Pz(y} of the new set tyi}? If, as is indicated 

10 
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a 

L ______ _ 

P(x) 

x x+dx b 

x x+dx b 

FIGURE 1. Illustrating the relationship between the 

density function P(x) and the distribution 

function F(x) for a hypothetical set 

of random numbers {xi}. 
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y 

y•f (x) 

y 

X I x+dx 

FIGURE 2. Transforming a set of random numbers 

{xi} into a set of random numbers 

{yi} through a function y=f(x}. 
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in Fig. 2, the interval (y,y+dy) is the image ~f the interval (x,x+dx) 

under {2.5a), so that 

(2.5b) 

then clearly the probability for finding yi inside (y,y+dy) is th~ same 

as the probability for finding xi inside (x,x+dx): 

P2(y)dy = Pt(X)dx (2.6) 

Inserting (2.5b) we therefore conclude that 

(2.7) 

where x on the right side of (2.7) is ~to be regarded as a function of 

y through the inverse of (2.5a): X 3 f-1 (y). The important result (2.7) 

shows that the density of random points yi around y=f(x) will be greater 

than, equal to, or less than the density of random points xi around x 

accordingly as the local slope ~y/dx!of the transformation curve is less 

than, equal to, or greater than unity; these features can be appreciated 

geometrically from Fig. 2. If the inverse function x·f-1 (y) is multivalued, 

so that a given dy-interval is populated from several dx intervals, then 

the right sides of (2.6) and (2.7) will evidently have to be summed over 

all contributing intervals. 

13 



Of special importance in Monte Carlo work is the set of random 

numbers distributed uniformly~ the unit interval, the elements 

of which we shall always denote by ri. More precisely, the set {ri} is 

defined by the density function 

1
0, 

P(r) = 1, 
0, 

for r<O 
for O~r~l 
for r>l 

or the corresponding distribution function [cf. (2.2)] 

lo. 
F(r) = r, 

1, 

for r<O 
for Ot>rt>l 
for r>l 

(2. 8a) 

(2.8b} 

Thus, the set {r i} is distinguish~;;d by the facts thi'lt; (!) the probability 

for a randomly drawn ri to lie in any dr-interval between 0 and 1 is 

equal to d~; and (!.!) the probability for a randomly drawn r i to be less 

than a given number r between 0 and 1 is equal to r. 

The set {ri} is important in Monte Carlo work for two reasons: First, 

there exist many short computer subroutines which are capable of rapidly 

generating elements of this set (or more precisely, elements of some 

set which simulates {ri} closely enough for most practical purposes); 

and second, it is possible to construct from the elements of the set 

{ri} the elements of a set {xi} distribut~d according to any prescribed 

density function P(x). In this report we shall not delve into the first 

point in any detail. The reason for this omission is that the writing 

14 
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of computer codes to generate mock elements of the set {ri}--so-called 

"uniform random number generators"--is a complicated, fest-changing art 

which is best entrusted to experts in statistics and the theory of 

numbers. A nice introduction to this subject containing many references 

to the literature is the short article by Chambers (Ref. 5); more de-

tailed treatments may be found in Chapter 3 of Hammersley and l~ndscomb 

(Ref. 1) and Vol. 2 of Knuth (Ref. 6). We shall content ourselveF here 

with giving only a brief glimpse of the general ideas involved in genera-

ting uniformly distributed "pseudorandom" numbers on a digital computer. 

Most uniform random number gen~rators currently in use are based 

upon the so-called "multiplicative congruential method". In :.ts simplest 

form, this method takes a starting integer N and generates a sequence of 
0 

integers N1, N2, ••• ,by means of the recursion relation 

Ni = CNi-l (modulo M) 

where C and Mare predetermined (and usually very large) in+-egers. This 

relation means that Ni is set equal to the remainder obtained when CNi-l 

is divided by M. Obviously, each Ni will lie betwe~n 0 and M, so the 

elements 

will lie between 0 and 1. lt turns out that, provided sufficient care 

is taken in choosing th~ numbers N
0

, C and M, the set of numbers {ri} 

obtained from the above algorithm approximates a uniform distribution 

15 



of random numbers in the unit interval surprisingly well. What un-

desirable correlations the method has (and it certainly does have some) 

can be greatly diminished by incorporating a few twists and turns into 

the above procedure. However, almost all uniform random number generating 

subroutines generally available for digital computers have in common 

with the procedure just described the feature that ~ach element rk 

is calculated in an operationally simple way from the result of the 

rk-l calculation, and also the feature that r1 is determined by a 

starter number N whose value can be changed at will by the user to 
0 

generate different, independent 11chains" of random numbers. Usually it 

is most economical to set up a uniform random number generating sub-

routine so that, after an "initializing call" which sets some value for 

the starter number N , the subroutine will c.1lculate and output one ran­
o 

dom number (the next number of the chain) each time it is called by 

the main Monte Carlo program. 

The author's recent Monte Carlo work ha3 made use of a short 

Fortran subroutine designed especially for the Univac 1108 computer 

by Marsaglia and Bray (Ref. 7); their method essentially tries to over-

come some of the correlations present in congruential generators by 

mixing several such generators together. We refer the reader to their 

article and to th~ previously mentioned works (Refs. 5, 1 and 6) for 

further details on the computer-generation of pseudorandom numbers from 

a uniform distribution in the unit interval. In the sequel we shall 

simply assuroe that we have easy computer access to a set of numbers 
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which effectively mimics the set {ri}; in practice, this is usually 

the ca<>e. 

2-3. The Inversion and Rejection Generating Methods 

We turn now to the important problem of how to construct, from a 

giv~n set of random numbers {ri} distributed uniformly on the unit 

interval, another set r~.} distributed according to any prescribed den­
J. 

sity function P(x). There are two primary methods for accomplishing 

this, \vhich we shall refer to as the inversion method and the rejection 

method. \.'e consider first the 

Inversion ~let hod: f)etermine the distribution function F(x) corres-

pending to the given densi.ty function P(x) fcf. (2.2)]. Then, for 

each element r. from the given set fr.}, choose x
1
• by solving the 

1 1 

equation F(x
1
)=ri; 1.e., construct the elements of the set h:

1
} from 

tlw elements of the set f r.} according to the formula 
1 

(2. 9) 

\~her.:• F-' is the inverse uf the distriLution function. 

f!~t the set lx.} constructed according to the foregoing procedure 
1 

actual.lv has P(x) as its densitv function follows from the transformation 

tll('nrt·r-. ''rtlV('d at tlw en<.1 of Sec. 2-1 {cf. (2.5)-(~.7)]. Thus, if the 

sd 1ri' with density fum:tion PJ(r) is transformed into a new set (xi} 

by the t.·ansformation x=F-1 (r), then by (2.1) the density function 

P; (x) of t lw new sel is 
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But the density function of the set {r.} is just Pt (r)=l (O~r(l); 
l 

furthermore, since (dx/dr)=l/(dr/dx), then (F-1)'=1/(F'). Thus, the 

density function of the constructed set {xi} is 

P2(x) = 1/[1/F'(x)] = F'(x)- P(x) 

where the concluding equality follows from the definition (2.2). 

To get some physical insight into the way the inversion method 

actua~ly works, consider the hypothetir.al plN of r=F(x)-versus-x, shown 

in Fig. 3. Essentially, t~e inversion method lays out the elements of 

the given set {r
1

} along the r-axis, and then projects each r 1-element 

onto the x-axis through the curve r=F(x). The projection is always 

well-defined since F(x) rises from 0 at x=~ to 1 at x=+oo in a non-

decreasing way. If £\r1 and £\r2 ar~ two equal-s:f.ze intervals in O<r<l, 

then they will each contain the same number of elements of the set {ri}, 

at least to within random statistical fluctue.tions, since the numbers in 

{ri} are uniformly distributed over the unit interval. By construction, 

then, the respective image intervals ~~ and 6x2 will also contain the 

same number of ~lements of th~ set {x1}, again to within ranoom sta­

tistical fluctuations. Now if, as il'l the case in Fig. 3, the slope 

of the curve F(x)-versus-x is greater in Axz than in 1\x1, then ~2 

will be proportionately smaller than ~x1, implying that ~~will have 

a proportionately greater density of points than hxt. But the local 

slope of the curve F(x)-versus-x is just the local value of P(x), as is 

seen from the definition (2.2). Thus, we see that the density of 
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r 

0 

I 

r=F(x) 

FIGURE 3. Illustrating the principle of 

the inversion generating method. 
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xi-points produced in a given region by the inversion generating method 

is proportional to the value of the function P(x} in that region, which 

is just as it should be. 

A simple but often used application of the inversion method is the 

generation of a set of random numbers {x.} distributed uniformly over the 
l. 

interval a~x~b. The density function here is evidently 

-
-11/(b-a}, 

P(x) 
0 • otherwise 

Using (2.2) we find that the distribution function in the interval 

a~x(b is 

F(x} = (x-a)/(b-a} 

(2.10a) 

(2.10b) 

The inversion of F(x) here is easil:r accomplished, and the construction 

rule (2.9} takes the entirely plausible form 

(2 .lOc) 

As a second general procedure for generating random numbers 

{xi} according to a prescribed density function P(x}, we consider the 

Rejection Hethod: For this method it is required that the given 

density function P(x} vanish everywhere outside some finite interval 

a~x~b, and be bounded by some finite number B inside that interval. 

Furthermore, in addition to the set of random numbers {r.l dis­
l 

tributed uniformly over the unit interval, we shall also need an 
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independent set of random numbers {xil distributed uniformly over the 

inten-al a~x~b [see (2 .10)]. The generating procedure is then as 

follows. Draw a pair of random numbers (xi• ri) from the given sets, 

and take x~ to be a member of the set {x
1
J if 

(2.11) 

If (2.11) is not satisfied, reject the pair (xi, ri) and keep drawing 

new pairs until the in~quality is satisfied. 

The proof that the set of x~-values which pass the !!acceptance cri­
l 

terion" (2.11) i~ indeed distributed according to the density function 

P(x) is somewhat more complicated than the proot for the inversion method, 

and is presented in Appendix A. We merely point out here that the ac-

ceptance criterion (2.11) is evidently statistically favorable to x~-values 
1 

for which P(x) is relatively large, and is statistically unfavorable to 

x~-values for which P(x) is relatively small. We should a.lso note that, 
l 

because 1 ratio is taken in (2.11), P(x) and its upper bound B need be 

known only up to an overall constant factor; i.e., the "normalization 

constant'' need not be known when using the rejection method. In any case, 

one finds that the efficiency of this generating process, or the 

probable fraction of the xi-values which will be accepted as xi-values, 

is given by [see Appendix A] 

f = 

b 
f P(x)dx 
a 

B• (b-a) (2.12) 
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G~ometrically, E can be interpreted as the ratio of the area undP.r the 

curve P(x) to the area under the rect&.tgle of height B and width (b-a) 

which encloses the P(x) curve. Clearly, then, it is desirable to choose 

for B the smallest upper bound on P(x), and for (a,b) the smallest 

interval outside of which P(x) vanishes identically. 

In our derivation of the rejection method in Appendix A, it will 

be seen that this method can actually be formulated in a slightly more 

general way: If the initial set of random numbers {xi} is distributed 

over a(x~b according to some density function P(x) [~ necessarily the 

uniform function in (2.10a)], then the density function of the set {xi} 

which is constructed according to the selection process (2.11) will be 

CP(x)P(x), C being the appropriat~ normalizing constant. This way of 

generating according to a product •tensity function is usually less ef-

ficient than an "all-at-once'' approach, but in some situations lt may 

prove to be more convenient. 

To compare in a few words the inversion and rejection methods for 

generating random numbers {xi} according to a prescribed density function 

P(:x), we may say that the inversion method constructs the set {xi} by 

distorting a uniformly tiistributed set through the di~tribution funetion, 

while the rejection method constructs the set {xi} by making selections 

from a uniformly distributed set randomly biased according to the 

density function. In any given situation, speed and convenience will 

usually select one method over the other. The inversion method is 

100% efficient in its use of random numbers, but it requires calcu-

lating and inverting the distribution function, a task which is sometimes 
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quite difficult. The rejection method does not require a knowledge of 

the distribution function nor even the absolutely normalized density 

function, but it does require us to know a reasonable upper bound on 

the density function; more0ver, if the shape of the curve P(x)-versus-x 

is such that the area of the smallest box enclosing this curve is very 

much larger than the area under this cu~e, then the rejection method 

will be very inefficient. 

One other method for generating a set of random numbers will be 

descrired in Sec. 2-8, after we have examined the problem of generating 

random points in morP than one dimension. 

2.4. Specifying Sets of Random Points 

We shall now see how the foregoing ideas concerning the specifica-

tion and construction of sets of random points in ~ dimension can be 

generalized to any number of dimensions. For concreteness, and with no 

real loss of generality, we shall confine our discussion mainly to the 

three-dimensional case; here we denote a general point by x=(x,y,z) where 

x, y and z are ordinary real variables. When we speak of a set of 

random points {~1}={(xi,yi,z 1 )} distributed according to the probability 

density function P(x)~P(x,y,z), we mean an inexhaustible set of triplets 

of real numbers from which wE> may "draw" sequential elements (x1 ,y1,z!), 

~2,y2,zz), •.. , such that 
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P(i)dr = P(x,y,z)dxdydz 

- probability that xi will lie between x and 

x+dx, and y
1 

will lie between y and y+dy, and 

zi will lie between z and z+dz. (2.13) 

A set of random points {(x1,yi,zi)} is completely characterized by 

its density function P(x,y,z). However, it is often convenient to intro­

duce a number of "lesser11 density functions which characterize only 

certain particular features of the distribution. For example, we may 

define the contracted density functions P{x,y) and P(x) by 

and 

P(x,y)dxdy probability that xi will lie between x and 

x+dx, and yi will lie between y apd y+dy, 

regardless of where z1 lies. {2.14a) 

P(x)dx - probability that xi will lie between x and x+dx, 

regardl2ss of where yi and z1 lie. (2.14b) 

In a similar way we may also define the contracted density functions 

P(y,z), P{x,z), P(y) and P{z). Of course, the functional forms of these 

contracted density functions will in general all be different; e.g., 

P{y,z) is generally not the same function of y and z as P(x,y) is of 

x and y, and P(z) is generally not the same function of z as P(x) is 

of x. Nevertheless, we shall avoid a cumbersome subscripting of these 

P-functions, and trust tha~ our meaning will always be clear from context. 
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It is easy to obtain expressions for the contracted density functions 

in terms of the full density function P(x,y,z), simply by invoking the 

addition theorem for probabilities. Thus, the probability in (2.14a) is 

J obtained simply by summing (integrating) the probability in (2.13) over 
~· 

' all dz-intervals, and the probability in (2.14b) is obtained by further 
~ • t summing over all dy-intervals: 
I 
~ 

P(x,y) c 7dz'P(x,y,z') (2.15a) 
-oc 

P(x) = jdy'Jdz'P(x,y',z') (2.15b) 
-"" -oo 

Of course, if we sum (2.13) over all xyz-space, we ~hould get unity 

(certainty), just as in (2.3): 

en cn oo 

fdx'fdy'fdz'P(x',y',z') = 1 
-00 -CD -CD 

(2.16) 

In addition to the contracted density functions defined in (2.14), 

we will also make use of various conditional density functions, which 

are defined as follows: 

P(y,zjx)dydz - probability that yi will lie 

between y and y+dy, and zi will 

lie between z and z+dz, given 

P{}c lx)dy - probability that y i will lie between 

y and y+dy, given that x
1
=x, regardless of 

where z
1 

lies. 
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P(zjx,y)dz - probability that z1 will lie b~tween z and 

(2.17c) 

We read P(y,zlx) as "P of y and z conditioned on x", P(ylx> as "P of 

y conditioned on x", and P(z jx,y) as "P of z conditioned on x and y". We 

may obviously introduce six more conditional density functions with 

different arrangements of the variables with respect to the vertical 

slash-- e.g., P(x,zjy), P(x\y), etc. However, it should be clearly 

understood that all these conditional density functions are generally 

different functional forms--e.g., P(x!y) is not the same function of 

x and y as P(xlz) is of x and z, etc. 

As with the contracted density functions in (2.14), the conditional 

density functions in (2.17) are completely determined by the form of 

the full density function P(x,y ,z). We ma;o: derive the expressions for 

the conditional density functions in (2.17) as follows: Applying the 

multiplication th~orem for probabilities to the probabilities defined 

in (2.14b) and (2.17a), we see that 

P(x)dx•P(y,zlx)nydz = P(x,y,z)dxdydz 

Therefore, 

P(y,zjx) = P(x,y,z)/P(x) 

or, with (2.1Sb), 

P(y,zjx) a P(x,y,z);(!uy~dz'P(x,y',z') (2.18a) 

Now treating x as a fixed parameter, the addition theorem for probabilities 
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yields the following relation between the probabilities defined in 

(2.17a) and (2.17b): 

01) 

P(ylx)dy •_!dz'dyP(y,z'lx> 

Inserting (2.18a) yields for P(ylx> the formula 

(2.18b) 

Finally, again treating x as fixed and applying the multiplication 

theorem to the probabilities defined in (2.17b) and (2.17c), we see that 

P(ylx)dy•P(zlx,y)dz = P(y,zjx)dydz 

Ther.efore, 

P(~lx,y) • P(y,z!x)/P(y!x> 

or, inserting (2.18a) and (2.18b), 

P(zlx,y) • P(x,y,z~Idz'P(x,y,z') (2.18c) 

It will be observed from the explicit formulae for the two-dimensional 

density functions P(x,y) in (2.15a) and P(y,zjx) in (2.18a) that each 

is correctly normali~ed: 

CO 00 00 CD 

_Ldx~£dy'P(x',y') =JC.y~!dz'P(y',z'jx) • 1 (2.19) 

Similarly, it will be observed from the explicit formulae for the one-

dimensional density functions P(x) in (2.15b), P(yjx) in (2.18b) and 

P(z!x,y) ln (2.18c) that they are also correctly normalized: 
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IX> IX> IX> 

_Ldx'P(x') =_ldy'P(y'jx) •_£dz'P(z'jx,y) = 1 (2.20) 

The formulae for these one-dimensional density functions will also be 

observed to imply the following important relation [cf. (2.1Sb), (2.18b) 

and (2.18c)]: 

P(x,y,z) = P(x)P(ylx)P(z!x,y) (2.2la) 

The physical meaning of this equation is best seen by writing it in the 

P(x,y,z)dxdydz = P(x)dx•P(yjx)dy•P(zjx,y)dz (2.21b) 

which says that the probability for simultaneously finding xi, yi and 

zi in the respective intervals (x,x+dx), (y,y+dy) and (z,z+dz) is equal 

to the product of: (!) the probability for finding xi in (x,x+dx), 

times (ii) the probability for finding yi in (y,y+dy) given that xi•x, 

times (iii) the probability for finding zi in {z,z+dz) ~iven that xi•x 

and yi•y. In other words, (2.2lb) is really a consequence of the multi­

plication theorem for probabilities. We shall refer to the act of 

e~pressing the full three-variable density function P(x,y,z) as a product 

of three one-variable density functions as "conditioning P(x,y,z)". 

The fact that we have derived explicit formulae for the three one-

dimensional density functions in (2.21), namely 

(2.22a) 

(2.22b) 
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P(z!x,y) = P(x,y,z)~_ldz'P(x,y,z') (2.22c) 

proves that in principle ft Is always possible LO conditi0n P(x,y,z). 

Indeed, it is always possible to carry out the conditioning with respect 

to any grder~Ej_ of the variah)Ps; e.~., we coulJ condition P(x,y,z) as 

P(y)P(xjy)P(zjx,v) or as P(y)P(zjy)P(xly.z),etc. 

Since P(x), P(yjx) and P(zjx,y) i.n (2.22) nre one-dimensional 

density functions, then Wf' can introduce in analogy with (2 .2) their 

af'SW;·tio.d <iistril">•..!tion fun.:tions r(x), F(yjx) :md F(zlx,y): 

(2.23a) 

y 
F(yjx) :jP(y'Jx)dy 1 (2.23b) 

z 
F(zlx,y) =_LP(z'l:<,y)dz' (2.23c) 

Th•1s, for example, F(y!x) is t\'>1' proh<~bility that y l will be less than 

We mav also define <~ thrN•- ·ilri.:~hle distdbut i0n function F(x ,y,z) by 

K : 7. 

F(x,y,zi ~'d X I f d V 
1 J d 7 I p ( :•' 

1 
, Y 1 

t Z 
1 

) (2. 24) 

Evidentlv, F(x,y,z) is the probability that a randomly selecteJ element 

applications, tll•,ugh, rlistrib11tion functions with more th.1n on.: argument 

are not nf much ul'e, for\·'.:! rec;jU that F(x) In (2.:n I; ~l.iefly of 

iat<'rc:st hecaust• o:· the red~.: whith F'- 1 p\:lys i11 ! Itt.' in"l'rsicm ~cnerating 

metht>d. H0w~ver. F(x,y,z) in (::!.24) is "''inentlv a mAp;>llW. fr0m 3-space 
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into 1-space, and hence does~ have an inverse. The one-variable 

distribution functions in (2.23), on the other hand, do nave unique inverses, 

and they will play an important role in the generalization of the in-

vers·~on gent.!rating method, as will be seen in the next section. 

Suppose a given set of random points {(xi,yi,zi)} with density 

function P1(x,y,z) is transformed into a new set of random points 

u = U(x,y,z) 

v "'V(x,y,z) ( 25) 

w .. W(x,y,z) 

What will be the density function P2{u,v,w) of the set {(u1,vi,wi)}? If 

dudvd~ is the image of the volume element dxdydz under the transformation 

{2.25), then clearly the probability for finding a point {u1,vi,wi) in&ide 

dudvdw is the same as the probability for finding a poi.nt (xi,yi,zi) inside 

dxdydz. Hence, in analogy with (2.6), we have 

P2(u,v,w)dudvdw = P1(x,y,z)dxdydz (2.26) 

The mathematical statement of the fact that the volume element dudvd~ 

centered at (u,v,w) is the image of the volume element dxdydz at (x,y,z) 

is simply Eq. (2.25) together with (cf. (2.5b)] 

(2.27a) 
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Here, 

a(u,v,w) 
d(x,y,z) -

(2.27b) 

is the Jacobian of the transformaticn (2.25), in which it is understood 

that the partial derivatives are all evaluated via (2 .25) at the point 

(x,y,z) under consideration. [Readers who are not altogether familiar with 

Jacobians and their significance may find the short, heuristic discussion 

given in Appendix B helpful.] With (2.27a), (2.26) implies that the 

density function of the transformed set {(ui,vi,wi)} is 

{ ) P ( )\/la(u,v,w)l 
p2 u,v,w • l x,y,z/ a(x,y,z) (2.28&) 

or equivalently [cf. (B. 8)] 

(2.28b) 

wherP. x,y and z are ~ to be regarded as functions of u,v and w through 

the invers~ of (2.25). If the transformation (2.25) is not strictly one-

to-one, so that a given dudvdw element is populated by several dxdydz 

elements, then the right sides of (2.26)and (2.28) will have to be summed 

over all contributing dxdydz elements. 

2-5. !!!!, Generalized Inversion Met he::!. 

Let us now see how the inversion method for generating random numbers 

xi according to a given density function P(x) can be generalized to 
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generate random triplets (x1,y i'zi) acconling to a given density function 

P(x,y,z). As already mentioned, the noninvertibiUty of the distribution 

function F(x,y,z) precludes its use in a formula of the type (2.9). Instead, 

we proceed as follows: 

Generalized Inversion Method: First, condition the given 

density function P(x,y,z) in the form P(x)P(y!x)P(zlx,y) 

[cf. (2.21) and (2.22)], and calculate the correspondJ.ng one­

dimensional distribution functions F(x), F(ylx> and F(zlx,y) 

[cf. (2.23)]. Then, with r 11 , r 2i and r
3

i three independent 

ran~om numbers drawn from the set {r1}, first obtain x1 

by solving (inverting) 

then obtain y1 by solving (inverting) 

where xi is the value found in (2.29a), and fin 

zi by solving (inverting) 

(2.29a) 

(2.29b) 

. obtain 

(2.29c) 

Yhere xi and y1 are the values foun~ in (2.29a) and (2.29b), 

respectively. 

That the set {(xi,yi,zi)} constructed according to the foregoing 

procedure actually has P(x,y,z) as its density function can be proved 
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I 

I 
i'!. ., 

•• $ 

as follows: First note that, in picking three random numbers rli' r 2i 

and r 3i from the set of random numbers {r1} distributed uniformly 

in the unit interval, we are essentially picking one random point 

(rli'rZi'r31) from the set of random points distributed uniformly over 

the unit cube in r 1r 2r 3-space. That is, since the probability for 

simultaneously finding r 1i in (r1,r1+dr1), r 2i in (r2,r2+dr2), and 

r 3i in (r
3
,r

3
+dr

3
) is just 

where P(r) is biven by (2.8a), th~n the probability density function 

if O~r.,l, j=l,2,3 
J 

otherwise 

Now, regarding (2.29), or the inverse thereof, as a transformation which 

carries each (r11 ,r2i,rJi)-point into a(xi,yi,zi)-point, it follows 

from (2.28b) that the density function P2(x,y,z) of the set {(xi,yi,zi)} 

is 

2.!.1 aq E.!:1 
rtX ax ax 

... 1· kl ~ ar3 
()y riy ay 

arl !!.!1 £!.1 az ()z az 
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Now, from (2.29a), r 1 is independent of y and z, and from (2.29b)., 

r2 is independent of z. Hence, all elements of the Jacobian determinant 

below the main diagonal vanish, so 

[by (2.29)] 

[by (2.23)] 

.. P(x,y,z) [by {2.21)] 

which establishes the desired result. 

From the point of view of the foregoing proof, the generalized in-

version formulae in {2.29) produce the desired results because these 

formulae constitute a transformation from r1r2r3-space to xyz-space 

which has the rather unique property that 

(2.30) 

From a less formal point of view, however, it is clear that the three-

dimensional inversion method i_ nothing more than three successive 

applications of the one-dimensional inversion method to the conditioned 

form of the density function. That is, (2.29a) generates a random number 

xi according to P(x), (2.29b) generates a random number yi according to 

P(ylxi), and (2 .29c) generates a random r.umber z1 according to P(z.!x1 ,y 1>. 
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Thus, once one appreciates the significance of the conditioned form 

of the density function in (2.21), the generalized inversion method 

presented above is intuitively quite plausible. 

It should be noted that one has considerable flexibility in applying 

the generalized inversion method. Thus, if one or more of the distri- 

bution functions F(x), F(y|x) and F(z|x,y) are intractible, one can try 

to condition P(x,y,z) in another form, say, F(y)-PCz |y) »PCxIy^), and 

thus work with the different distribution functions F(y), F(z|y) and 

F(x|y,z). Alternatively, it will be observed that any or all of the 

three successive steps in (2.29a), (2.29b) and (2.29c) cc/ld actually be 

carried out by applying the one-dimensional rejection method. For example, 

once x. has been picked according to (2.29a), one could replace (2.29b) 

by an application of the one-dimensional rejection method to generate a 

random point y. according to the density function P(y|x.), and then 

proceed as usual with (2.29c). However, we shall regard such applica- 

tions of the one-dimensional rejection method as still falling under the 

scope of the "generalized inversion method", and reserve the term 

"generalized rejection method" for a procedure to be described later. 

2-6.  Generating Uniformly Distributed Random Points 

A very important application of the generalized inversion method is 

the generating of random points from a uniform distribution inside some 

given region Q.  Suppose for now that Ü  can be specified in the 
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following way:+ 

Q = {(x,ytz) IJai^x^bi, aaCxky^baW, a3(x,y)^2^b3 (x,y)}   (2.31a) 

The volume \Q\  of the region fi is thus given by the integral 

bi   b2(x
f) 

|Q| = /dxf /    dy'^^.y1) -aavx^.y')] 
ai  a2(xf) 

(2.31b) 

where the integrand of course represents the result of the trivial 

z*-integration. 

The density function defining a uniform distribution of points inside 

ß is 

(1/|U| , for (x,y,z)£« 

0 , for (x,y,z)#i 
P(x,y.z)=J (2.32) 

To apply the generalized inversion method to generate random points ac- 

cording to this P(x,y,z), we must evidently condition P(x,y,z) in the 

manner of (2.21). This is not in general a trivial task, because of the 

boundaries of Ü.    Thus, inserting (2.32) into (2.22), we find for the 

one-variable density functions 

b2(x) 
P(x) = iQf1  /  dy^ba^y1) -a3(x.yr)],  ai^x^bi   (2.33a) 

32 (X) 

t. 
Eq. (2.31a) is to be read "Ü  is the set of all points (x,y,z) for which 

ai^x^bi, a2(x)<:y^b2(x) and a3(x,y)^z$bv, (x^)". 
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/b2(x) 
P(y|x) = [b3(x,y) - aaCx.y)]/  / dy,[b3(x,yf) - aaCx^1)], 

/ 32(x) 

a2(x)^b2(x) (2.33b) 

P(z|x,y) - l/[b3(x,y) - a3(x,y)], a3(x,y)^2^b3(x,y)     (2.33c) 

The corresponding one-variable distribution functions in (2.23) are 

therefore given by 

x   b2(xl) 

F(x) = |^r / dx1  /  dy'[b3(xl,yf) -a3(xf,y1)],  aiCx^bi 
ai  a2(x') 

(2.34a) 

y /b2(x) 
F(y|x) =  J dyf[b3(x,y,) - a3(x^y

,)]/ / dy» 
a2(x) / 32(x) 

[ba^y») -a3(x,y,)],  32 (x)<y^b2 (x) (2.34b) 

F(z|x,y) = [z - 33(x,y)]/[b3(x,y) - 33(x,y)], 

33(x,y)^b3(x,y)     (2.34c) 

Thus, to gener3te 3 r3ndoin point uniformly inside Q by the gener3lized 

inversion method, we must insert the above distribution functions into 

(2.29), 3nd solve successively for x., y. and z4. Depending upon the 

sh3pe of Ü  —i.e., depending upon the boundary functions ^(x), b2(x), 

33(x,y), b3(x,y)—this m3y be a very easy t3sk or 3 very difficult t3sk. 

The e3siest csse is realized when fi is a "box", with the boundary 

37 

***** mükmMmä 



functions a. and b all constants. In this case (2.31b) gives 

^| a (bi-ai)(b2-a2)(b3-a3) 

The one-variable density functions in  (2.33)  become 

P(x) « l/(bi-ai),      ai^x^bi 

P(y|x) = l/(b2-a2),      az^y^bz 

P(z|x,y)  = l/(b3-a3),      a3^z^b3 

and the corresponding one-variable distribution functions in (2.34) become 

F(x) = (X"€i)/(bi-ai),  ai^bi 

F(y|x) = (y-a2)/(b2-a2),  a2^y^b2 

F(z|x,y) = (z-a3)/(b3-a3),  as^z^bs 

Inserting these distribution functions into (2.29) and inverting, we 

obtain the following algorithm for generating a random point (x.ty.,z.) 

from a uniform distribution inside the box {a^x^bi ,a2<y^b2 »3 3^z^b3}: 

xi = ai + (bi-aOr^ 

yi = a2 + (b2-a2)r2i 

z = as + (b3-a3)r3i 

(2.35a) 

(2.35b) 

(2.35c) 

Here, r, ., r? and r... are independent random numbers from a uniform 

distribution in the unit interval. Eqs. (2.35) are precisely what 
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we should expect on the basis of the rule in (2.10c): we simply generate 

each coordinate independently from a uniform distributicn along the cor- 

V 
I       responding edge of the box. 
;*' 

When the boundary functions a. and b. are not all constants, so that 

Pi is not a box, then the one-dimensional distribution functions must be 

calculated according to (2.34), inserted into (^.29), and inverted.  It is 

important to realize that, in this general case, one will not obtain 

equations having the simple form (2.35). That is, although (2.34c) and 

(2.29c) will indeed produce an equation like (2.35c) with ris and bs 

replaced by a3(x.,y.) and b3(x.,y.), (2.34b) and (2.29b) will not produce 

an equation like (2,35b) with a2 and b2 replaced by a2(x,) and b2(x.), 

and (2.34a) and (2.29a) will not produce (2.35a). To put it differently, 

although P(z|x,y) in (2.33c) indeed describes, for fixed x and y, a 

uniform distribution in z, P(y|x) in (2.33b) does not describe, for fixed x, 

a uniform distribution in y, and P(x) in (2.33a) does not describe a 

uniform distribution in x.  The point here is that the correct version 

of the algorithm in (2.35) for non-box regions Q  cannot be easily 

intuited a_ priori. 

It is in principle always possible lo apply the generalized in- 

version methed to generate random points aniformly inside a given region 

2, provided Ci  is defined by means of boundary functions a. and b. as 

in (2.31a).  In practice, though, the calculation of the one-variable 

distribution functions in (2.34)  and their subsequent inversion often 

prove to be prohibitively difficult. Furthermore, it often happens 
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that the volume ß is not defined through boundary functions of the 

kinds in (2.31a), but rather through one or more inequalities between 

various functions of the coordinates.  In such situations, it is some- 

times feasible to proceed in the following alternate way: Choose a 

box-like region £ which completely encloses the given region ft. Generate 

random points uniformly inside %  according to the procedure described 

in connection with (2,35), but keep only those points which happen to 

also lie inside Q.    Clearly, the subset of "kept" points will be dis- 

tributed randomly and uniformly inside Ü,    This simple procedure has the 

advantage that one can apply it without having to calculate and invert 

the various one-dimensional distribution functions. Furthermore, one 

does not even need to know the boundary functions a and b, in (2.31a); 

one only needs to be able to decide whether or not a given point in ^ 

lies inside ft.  The only possible drawback to this method is its ef- 

ficiency. Clearly, the approximate fraction of uniformly distributed 

random points inside ^ which also lie inside ft will be the ratio of the 

volumes, |ft|/|£|.  If this ratio is very small—i.e., if ft is so shaped 

that its volume is much smaller than the smallest box T.  which can be 

fitted around ft—then this method for generating random points uni- 

formly inside ft will be correspondingly inefficient. 

We shall now illustrate the foregoing two procedures for generating 

random points uniformly inside non-box regions by considering the fol- 

lowing two-dimensional problem:  Let ft be the region in the xy-plane 

which is bounded by the x-axis, the line x«!, and the curve y=x , 

where n is a fixed, positive integer. A sketch of ft is shown in Fig. 4. 
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FIGUBE 4.  An example of a two-dimensional 

region u. 

Al 



Suppose we wish to generate random points (x ,y.) uniformly Inside ß. 

One way of proceeding would be to generate random points uni- 

formly Inside the unit square S, and then keep only those points which 

happen to fall Inside ß. Letting r-, and r«. be two independent random 

numbers from a unifoi  ilstribution in the unit interval, the generating 

algorithm is evidently 

xi = rii 

yi = r2i 

keep only if y.^x. 

(2.36) 

Since the volume of the unit square is |2j=l and the volume of Ü  is 

n 1    x *        1 
Jdx/dy =  /xndx = ^ 
0  0     o 

(2.37) 

then the efficiency of this method is 

l«l/m-^ (2.38) 

For small values of n this method would net be too bad; e.g., for n=l, 

ft would be a simple triangle, and half the points generated inside Z 

would be kept.  However, if n is very large this method would evidently 

not be satisfactory. Let us see how we could generate the points inside 

Q  directly using the generalized inversion method. 

We wish to generate random prints (x.,y.) according to the density 

function 
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P(x,y) = 

l/|a|, for (x,y)efi 

0 , for (x,y)^ (2.39) 

where ll  is the volume shown in Fig. 4, and \ü\   is given by (2.37). 

We first "condition" this density function in the form 

P(x,y) = P(x)P(y|x) (2.40) 

The one-variable density functions P(x) and P(y|x) are given by 

[cf. (2.22)] 

P(x) = ^(x.yMdy* = (n+Dx11,  0^x^:1 
o 

P(y|x) - -n 
P(x>y) x ,  (Ky^x 

(2.41a) 

(2.41b) 

Jp(x,yl)dy, 

o 

and the corresponding one-variable distribution functions are given by 

[cf. (2.23)] 

n+1 
F(x) I JPU^dx' = x  ,  O^x^l 

y 
F(y|x) = Jp(y,|x)dy, = x^y,  O^y^x 

(2.42a) 

(2.42b) 

Then, with r1. and r«. two independent random rumours from a uniform 

distribution in the unit interval, we put in accordance with (2.29), 

r1.=F(x.) and r =F(y.|x,), and solve surjessively for x. and y,. The 

result is easily found to be 
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x  - r  l/(n+1) Xi " rii 

yi Ä Xlr2i 

(2.43) 

Thus, (2.43) is the algorithm whereby one directly generates random 

points uniformly inside the region Üf  shown in Fig. 4, for any fixed 

value of n. 

It is tempting to try to "improve" the algorithm (2.36) by modifying 

its second equation to read 

yi = Xlr2i 

This would amount to first generating a random coordinate x. uniformly 

between 0 and 1, and then a random coordinate y. uniformly between 0 

and x,  (rather than between 0 and 1). Clearly this would a toraatically 

satisfy the inequality in (2.36), so that ever" point (x,,y,) generated 

in this way would lie inside Q, The trouble with this procedure is that 

the points (x,,y.) generated in this way would not cover Ü  uniformly. 

To see this, we need only observe that this method would produce as many 

points with x <!/.? as with x >l/2, implying that the portion of Ü  in Fig. 4 

to the left of the line x-1/2 would contain just as many points as the 

portion of Q to the right of this line—a situation clearly inconsistent 

with a uniform distribution. The only way of first generating an 

x -value and then generating a y,-value such that (x.,y.) is always a 

random point from a uniform distribution inside ß, is to proceed 

according to the algorithm (2.43). 
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A more elaborate example of using the generalized inversion method 

to generate random points uniformly inside a given region will be 

presented in Section 2-10. 

rrZ* The Generalized Rejection Method 

In the preceding section we showed how one could generate random 

points uniformly inside a given region Cl.    Having this ability, it is 

possible to generate random points inside Q  according to any prescribed 

density function P(x,y,z) by a straightforward generalization of the 

one-dimensional rejection method: 

Generalized Rejection Method:  We are given a density function 

P(x,y,z) which vanishes everywhere outside a specified region H, and 

which is bounded by a number B inside Q.  We require a set of random 

points [(x!,y!,zl)} distributed uniformly over Q, and also an in- 

dependent set of random numbers {r.l distributed uniformly over the 

unit interval.  To generate a random point (x.,y.,z.) according to 

the density function P(x,y,z), draw successive pairs of random 

poinLs r. and (x!,y!,zl) until the inequality 

P(x!,y:,z!)/B 5 r. (2.44) 

i s ound to be satisfied, whereupon take (x.,y.,z.)=(x!,y!,z!). 

Tlio proof for this method is a straightforward generalization of the 

proof in on<i  dimension, which is given in Appendix A.  As with the one- 

dimensional case, it should be noted that it is only necessary to know 
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P(x,y,z) and its upper bound B to within a constant factor, because 

only their ratio is used.  In any case, the efficiency of this method 

is [cf. (2.12)] 

J//QP(x,y,z)dxdydz 
E Röi  (2-45) 

so it is desirable to take B equal to the least upper bound P(max) of 

P(x,y,z) in Ü, 

It may be noted that the alternate technique mentioned in the 

previous section for generating random points uniformly in a non-box 

region U—namely, by picking from a uniform distribution inside an 

enclosing box X all those points which happen to fall inside Q—is 

really an application of the generalized rejection method. Thus, we 

start with a set of random points {(x',y',z!)} distributed uniformly 

inside a box I which encloses the given region Q  , and we proceed 

to construct a set {(x.,y.,z )} distributed according to the density 

function P(x,y,z) in (2.32). The least upper bound for P(x,y,z) in 

(2.32) is evidently B = 1/|^|, so the ratio on the left of (2.44) will 

be 1 if (x!,y!,z!) c Q  and 0 if (x!,y!,z!) t  Q.  In the former case 

the inequality in (2.44) will always be satisfied and the trial point 

will be kept, while in the latter case the inequality in (2.44) will 

never be satisfied and the trial point will be rejected.  In this case 

there is never any need to draw a random number r :  the acceptance of 

the trial point depends ultimately only on whether it lies inside Q, 

The efficiency of this method is calculated from (2.45) by replacing 
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1 by £, inserting for P(x,y,z) the function in (2.32) and putting 

B«1/|Q|; thus, 

F     1     _ M 
" (l/|fi|)-|Z| " |E|" 

just as we expect. 

If the set {(x!,y!,z!)} used in the generalized rejection method is 

distributed over Q according to a (not necessarily uniform) density function 

P(x,y,z), then the density function of the set {(x,,y.,z.)} constructed in 

accordance with the selection rule (2.44) would be CP(x,y,z)P(x,y,z), C 

being the appropriate normalization constant. This follows from a straight- 

forward extension to three dimensions of the arguments presented in 

Appendix A. 

2-8.  The Contraction Method 

■ We have discussed two general ways of generating random points according 

to a prescribed probability density function—namely, the inversion method 

and the rejection method.  We shall now describe one more method, which we 

shall call the "contraction method", for accomplishing this task.  This 

method is applicable whenever the given density function can be regarded 

as a contracted density function of some higher dimensional disiribu- 

tion which can be easily handled.  In its simplest  form, the contraction 

meihüd can be described as follows: 

Contraction Method: It is desired to generate a set of random points 

{x.} according to a given density function P(x), but it is found that 

neither the inversion nor rejection method offers an efficient way 
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of doing this. However, it is discovered that there exists a 

density function P(x,y) for which P(x) is the y-contracted density 

function: 

P(x) = f?(xfy')dy' (2.46) 

It further happens that, by using either the generalized inversion 

method or the generalized rejection method, it is possible to 

generate random pairs {(x.,y.)} according to P(x,y) rapidly and 

efficiently. Then, by generating such a set ((x.,y.)} and simply 

ignoring the y-coordinates, we have by (2.46) a set of x-coordinates 

{x.} which are randomly distributed according to P(x). 

We may illustrate the potential usefulness of the contraction 

generating method by considering the following example.  Suppose it is 

desired to generate a set of random numbers {y.} distributed according 

to tue density function 

P(y) = (2.47) 
(n+l)[l - y1/n],  for (Kya 

0,  for y<0 and y>l 

where n is some fixed, large integer. For the inversion method, we can 

calculate the distribution function easily enough, 

1/n, 
F(y) I ^(y^dy1 = y[l + n - ny1/n] (2.48) 

but we observe that the equation r =F(y.) can be inverted, as required 

by (2.9), only numerically. The rejection method would entail picking 

a pair of random numbers y and r uniformly in the unit interval, aud 
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[noting that the least upper bound on P(y) is B=(n+1)] taking y! to be a 

member of the desired set {y.} if and only if [cf. (2.11)] 

P(yp/B - 1 - y|1/n >,  ri (2.49) 

However, the efficiency of this method is easily calculated fron (2.12) 

to be E=l/(n+l), which is very low under the given specification that 

n is large. 

We now astutely observe that the density function P(y) given in 

(2,47) coincides with the x-contracted density function of the quantity 

P(x,y) defined in (2.39),(2.37) and Fig. 4:T 

P(y) = /P^.y^x' = /(n+Ddx1 = (n+1) [l-y1/n] 
1/n 

y 

Now we have already found that the algorithm in (2.43) offers a very ef- 

ficient way of generating random points {(x.,y_.)} according to P(x,y), even 

if n is very large. Therefore, by first generating a number x. according to 

the first of Eqs. (2.43), and then using this x.-value to generate a number 

y. according to the second of Eqs. (2.43), we will have thereby generated 

a y.-value according to the density function in (2.47). Of course, we have 

had to use two random numbers to do this, but this is still a more efficient 

Notice in passing that the functional forms of P(y) in (2.47; and P(x) 

in (2.41a) are indeed quite different, even though both are contracted 

from the same two-dimensional density function P(x,y). 
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method for large n than is offered by either the inversion or rejection 

methods. 

Variations on the contraction method are seen to be virtually 

limitless. For example, one might find that it is a simple matter 

to generate a set of random points ((x.,y.fz,)} according to a density 

function PCxjy.z) by applying the generalized inversion method, con- 

ditioning P(x,y,z) as P(x)*P(y|x)*P(z|x,y) [cf. (2.29)]. Then, by ig- 

noring the x- and y- coordinates we have available a set of random 

numbers {z.} distributed according to the density function 
i 

P(z) = Jdx'Jdy'PCx'^'.z) (2.50a) 
-00   -00 

and by ignoring the x-coordinates have available a set of random points 

^(y^Z-fH distributed according to the density function 

P(y,z) - /dx'PCx'.y.z) (2.50b) 
-00 

and so on. 

We thus have at our disposal a variety of techniques which can be 

used, in conjunction with a given set of random numbers {r.} distributed 

uniformly in the unit interval, to construct a set of random points {x_. 

distributed according to any prescribed density function P(x).  In tV i 

next chapter we shall see how to use such sets of points to numerically 

estimate definite integrals. We conclude the present chapter by con- 

sidering two examples, of interest in both statistics and statistical 

mechanics, which illustrate some cf the ways in which one can utilize 

the random number generating techniques developed in this chapter. 

50 

iJiiMiiiiilliiinfintiii^i-iiirrr Til ■iiiirnifiilimi-  ^.-■■-..;-..-..*  j,  ^ 



2-9 An Example: The Weighted Gaussian 

Consider the problem of generating a set of random numbers {x.} 

distributed according to the density function 

P(x;n,a) 
A(n,a) x exp(-ax ),  x^O 

0 ,  x<0 
(2.51a) 

where n is any fixed non-negative integer and a is any fixed positive 

number. The constant A(n,a) is defined so that P(x;n,a) satisfies the 

normalization condition (2.3); using standard integral tables one finds 

A(n,a) H 

Vf 
2 2n/2a(n+l)/2 

/TT l'3*5*''(n-l)  ' 

l2a(n+1)/2/^! > 

n=0 

nr2,4,6,, 

n^l.3.5.. 

(2.51b) 

For n-0, we have P(x;0,a)=2/a7TTexp(-ax2), x^O, which is often referred to 

as the Gaussian curve.  [More precisely, the Gaussian curve is usually 

defined as /a/'!Texp(-ax2) on the entire x-axis, so our P(x;0,a) is 

really just half of the Gaussian curve.] By including the factor x , 

n>0, we obtain what we shall term a "weighted Gaussian".  It is easy 

to show that P(x;n,a) assumes its maximum value at the point x=/n/2a; 

furthermore, for n^l,P(x;n,a) tends to 0 as x^O, and for all n,P(x;n,a) 

tends to 0 as x-*30. 

If we wish to generate a set of random numbers (xj according to 

P(x;n,a) by the ordinary inversion method, we must first calculate the 

distribution function 

1 
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FCx^.a) - /P(x,;n,a)dx, 

o 

This calculation Is rather lengthy for arbitrary n, and Is found to 

yield 

F(x;n,a) 

erf(/ax) 
n/2 (aax2)^1 

erf (y^x) -^ /ax exp(-ax2) I    j^**/.. 

(n-l)/2   .    2VV 
i             /      2x  r          (ax ; 1 - expC-axO  I  — 

v=0 
v! 

, n»0 

(2V-1), n«2,4,.. 

, n=l,3,.. 

(2.52) 

where erf(x) is the so-called "error function", 

2 
srf(x) n^/exp(-t2)dt,  x^O (2.53) 

which is tabulated in many mathematical handbooks.  It is clear from (2.52) 

that the task of inverting F(x;nfa) is in general not a trivial matter. 

This is particularly true for n=0,2,4,..., since erf(x) can be calculated 

and inverted only by numerical methods. There is in fact only one case for 

which F(x,n,a) can be easily handled. This is the case n=l, for the 

equation 

r - F(x^;l,a) * 1 - exp(-ax2) 

can be easily inverted to obtain 

XiSVal08(3^7) (2.54a) 

as the algorithm whereby one constructs from a set of random numbers 
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{r } distributed uniformly In the unit Interval, a set of random numbers 

{x1} distributed according to the density function 

P(x;l,a) « 2ax -xp(-ax2),  x^O (2.54b) 

A straightforward application of the rejection method to P(x;n,a) 

is not very satisfactory because P(x;n,a) is non-zero over an infinite 

interval. Of course, we might simply put P(x;n,a)=0 for all x larger 

than some large but finite value x , but this procedure is rather arbi- 
o 

trary. Moreover, the efficiency of the rejection method is inversely 

proportional to the length of the interval (a,b)=(0,x ) over which the 

initial uniform set (x!) is taken [see (2.12)1, so the larger we take 

x the more inefficient the rejection method becomes, 
o J 

We shall now derive two different methods for efficiently generating 

random numbers (x.) according to the n=0 density function, 

P(x;0,a) = 2/a/Tf exp(-ax2),  x>0 (2.55) 

We shall then show how one can easily construct, from a given set of 

random numbers {x.} distributed according to P(x;0,a), another set of 

random numbers (p } distributed according to P(p;n,a) for any integer 

n>0. 

The first method for generating random numbers (x.) according to 

P(x;0,a) essentially consists of a combination of tue contraction and 

inversion methods, coupled with a suitable transformation of variables. 

Consider the auxiliary two-dimensional density function P(x,y), defined by 
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POc.y) -  P(x;0,a)-F(y;Ofa) 

4^ exp(-a[x2+y2]).  for x.y>0 ^ ^ 

0 ,  for x<0 or y<0 

Clearly, the contracted density functions P(x) and P(y) are 

CD 

P(x) r JPCx.yMdy1 - P(x;0.a) (2.57a) 
o 

oo 

P(y) = !?(x\y)dx' =  P(y;0,a) (2.i>7b) 
o 

so that if we can generate random pairs {(x.,y.)} according to P(x,y) 

then the separate coordinate sets {x.} and {y.} will each be a set of 

random numbers distributed according to the desired density function. 

Moreover, since 

P(x|y) E P(x,y)/P(x) - P(x;0,a) - P(x) (2.58a) 

and 

P(y|x) = P(x,y)/P(y) = P(y;0,a) = P(y) (2.58b) 

then for any random point (x,,y.), a knowledge of x. tells us nothing about 

the possible values of y.; in other words, the sets {x,} and {y.} derived 

from the set {(x,,y.)} are statistically independent of each other. Now, 

how can we obtain a set {(x.,y.)} distributed according to P(x,y) in 

(2.56)? Consider the transformation of variables (x,y)-Kp,e) defined by 

x * pcosG 

y = psin0 
(2.59) 

Since 9(x,y)/3(p,9)«p, then a distribution of random pairs ((x.,y.)} 

with the density function P(x,y) in (2.56) corresponds, under the 
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transformation  (2.5^),  to a distribution of random pairs  UP.,0.)} with 

density function  [cf.   (2.25)-(2.28)l 

r. ^(0,6)  = P(x,y) jHf^j ' ^p exp(-ap2) (2.60) 

where 0^p<« and 0^9^T!72.     Conditioning P(p,n)   in the  form ^(p) ^(O |p), 

I we find 

Tr/2 
P(p)  =  ^(p.eMde'  = 2ap exp(-ap2)  3 P(p;l,a) (2.61a) 

:: C 

Help)  E ?(p,9)/?(p) * 1/(1/2) (2.61b) 

Now, we have already seen how to generate random numbers p. according to 

P(p;l,a) [cf. (2.54)]; furthermore, i*- is trivial to generate random numbers 

e. in (0,7T/2) according to the density t'inction in (2.61b) [cf. (2.10)]. 

Hence, it is a simple matter to generate random pairs {(p.,0,)}  according 

to ?(p,6). Our algorithm for generating random numbers {x.) according 

to P(x;0,a) is therefore as follows:  Letting r.. and r9. denote two random 

numbers from a uniform distribution in the unit interval, calculate 

[cf. (2.54) and (2.10)] 

ei = {l)c2i (2.62b) 

Then calculate, in accordance with (2.59), 
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x. ■ p cosB. (2.63a) 

yi - Pisinei (2.63b) / 

The random pairs ((x.,y,)} generated in this way will evidently be 

distributed according to the density function P(x,y) in (2.56). There- 

fore, by (2.57), the set {x.} will be distributed according to the density 

function P(x;0,a) and the set {y,} will be distributed according to the 

density function P(y;0,a). Moreover, because of (2.58) the sets {x.} and 

{y.} are statistically independent. so that the numbers x. and y calculated 

from the same p. and 9. in (2.63) can be used successively without intro- 

ducing unwanted correlations. Note that this generating method, which 

operationally involves nothing more than the formulae in (2.62) and (2.63), 

is actually 100% efficient, in that the two random numbers r,. and r^ 

from a uniform distribution in the unit interval actually produce two random 

numbers distributed according to the desired density function P(x;0,a). 

[Note also that the quantity (1-r-.) in (2.62a) can be replaced by r.., 

since both are uniformly distributed random numbers in the unit interval.] 

We next consider an alternate method of generating random numbers 

{x.} according to the density function P(x;0,a). This method consists of 

first introducing a change of variables x-^y which transforms the infinite 

range 0^x<00 into the finite range 0<y^l, and then applying to the trans- 

formed density function the one-dimensional rejection technique.  [This 

method is adapted from Fluendy, Ref. 2, p. 77.] The x^-y transformation 
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used here Is 

y - e"'ax  or  x « -U- logy (2.64) 

Under this transformation a set of random numbers {x.} distributed over 

the Interval CXx«» according to P(x;0,a) corresponds to a set of random 

numbers {y } distributed over the interval 0<y4l  according to the density 

function [see (2.5)- (2.7)] 

P(y) » P(x;0,a)|^[ 

Using (2.64) and (2.55), we easily find 

P(y) - 7|y"1exp(-log2y),  0<ya (2.65) 

It is not difficult to show that ^(y) assumes its maximum value at 

y=l/v^e, and that this maximum value is 

B'Tfe1^ (2.66) 

Hence, va can generate a random y,-value according to P(y) by repetitively 

drawing pairs of random numbers y' and r. from a uniform distribution in 

the unit interval until the Inequality [of. (2,11)J 

or equivalently 

(I+ ^^i) N< log(r") (2-67) 
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Is found to be satisfied.    We then take y1"y|. and put 

x1=-V|logy1 (2.68) 

in accordance with the transformation (2.64). The efficiency of this 

method—i.e., the fraction of the y'-values which lead to acceptable 

y.-values, and hence acceptable x.-values—is found from (2.12) to be 

This efficiency is quite satisfactory; it implies that roughly 2 out 

of every 3 y'-values tried will be accepted. 

We thus have available two methods of rapidly and efficiently gener- 

ating random numbers {x.} according to the density function P(x;0,a), 

We shall now show how one may use random numbers distributed according 

to P(x;0,a) to construct random numbers distributed according to P(x;n,a) 

for any integer n>0. The method is operationally quite simple:  If 

xiJ»x«.,...,x .- . are n+1 numbers drawn at random from a set {x.} whose 
li ^ i    n+i, i i 

density function is P(x;0,a), then 

P^ y^|7+...^+M (2.70) 

will be a random element from a set {p.} whose density function is P(p;n,a). 

To prove the last statement, consider the (n+1)-dimensional density 

function 

n+1 
P(xi,X2,...,x ..) Elpfpfr ;0,a) 

n ^   j-1 3 

2"+1(£)^^exp(-a[x?+...^1,). « ** ^0 ^ 

0 ,  if any x^O 
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We may generate a random point (x-.,x„,,...,x +1 J) according to this 

density function merely by picking each component independently according 

to the density function P(x;0,a); this follows because, as may be readily 

seen from (2,71), 

P(xi) = PCx^O.a) 

P(x2|xi) = P(x2;0,a) 

P(x3|xi,X2) = P(x3;0,a) 

etc. 

Consider next the transformation of variables (xi,X2,,..,x +1 )"*■(?,ai,a2,,..jC)t) 

which corresponds to a change from the Cartesian respresentation of an 

(n+1)-dimensional vector to a polar representation. Here, p is the "length" 

of the n-KL dimensional vector, while the a.'s are certain angles or cosines 

thereof. For example, for n-1 we have a 1-6, with 

^2  = v2 pz - Xf + x|. xi = pcosG 

X2 = psinö 

and for n=2 we have ai=cose and a2=4, with 

5(X1,X2) = 

9(p.e) 

xi - psin9cos(|)] 

X2 - psin6sin(J) 

X3 = pcoscj) 

n2   _      7    ,       2    .       2 3(X1,X2,X3) _ -2 
,    p  - X! +X2 +X3,    3(pjCOS0j0) " P 

In general, the transformation we consider has the properties that 

)2 = x? + x| + ...+ x n+1 
(2.72a) 

and 
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= p (2.72b) 

From (2.25)-(2.28) it follows that a set of random (n+1)-tuples 

{(x,.,X2.,...,x,  )} distributed according to the density function 

P(x,,x2,...,x .-) corresponds to a set of random (n+l)-tuples 

{(Pj.ot-ij»... »a .)} distributed according to the density function 

|3(x1,x2,...,xn+1) 
P(p9av...9an)  » PCx^,...^^) 

0n+l/a\(n+l)/2   .  *sji = 2  {-y exp(-ap )p 

rC(n,a)pnexp(-ap2) 

The fully contracted p-density function is therefore 

?(p) » /da1.../danP(p,a1,...,an) 

= Cf(n.a)pnexp(-ap2) 

PCp) = A(n,a)pnexp(-ap2) = P(p;n,a) 

(2.73) 

or 
(2.74) 

Here, the second equality follows from the fact that ^(p,^,.. .,a ) is 

Independent of each a , and the last equality follows by simply recognizing 

that P(p) must in any case be correctly normalized. Hence, we have shown 

that the quantity p defined in (2.72a)  is distributed according to 

P(p;n,a). This establishes the simple construction algorithm (2.70). 

Actually, the algorithm (2.70) is merely a generalization of a 

familiar result in statistical mechanics: For gas molecules in thermal 

equilibrium, each Cartesian component v of the molecular velocity v 
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is distributed according to the density function expC-mv./^kT); con- 

1/5» 

sequently the molecular speed vCvi-hrj+va)  is distributed according 

to v2exp(-mv2/2kT). 

In conclusion, we see that we may generate random numbers {x } 

according to the weighted Gaussian function P(x;n,a) in (2.51) either 

by numerically inverting the distribution function F(x;n,a) in (2.52), 

or by first generating random numbers according to P(x;0,a) via either 

(2.62)-(2.63) or (2.67)-(2.68) and then using (2.70). 

2-10. An Example: Uniform Distribution of Non-overlapping Rods on a Line 

Consider the problem of distributing N line segments or "rods", each 

of length a, randomly and uniformly inside the x-axis interval (0,L), 

subject to the constraint that none of the rods overlap. We assume that 

L > Na (2.75) 

so that the interval (0,L) is indeed large enough to accommodate all the 

rods. 

One way of proceeding on this problem would be to scatter the rods 

randomly, uniformly and independently inside the interval (0,L) until we 

come by chance upon a configuration in which none of the rods overlap. 

In this approach, we first draw N random numbers r-.r«,...»r« from the 

uniform distribution In the unit Interval, and we tentatively locate 

the center of rod k at 
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xk = I + (L - a)rk,   k«1.2t....N (2.76a) 

The resulting configuration x-»x«,...,x„ Is then accepted If it is found 

to satisfy the no-overlap condition 

|xk-x.| > a,  all Mj (2.76b) 

If this condition is not satisfied then the configuration is rejected (the 

entire configuration, not just those x, fs which are found to violate (2.76b)], 

and we must try again using a different set of random numbers r-,r?,... ,r.. 

from the uniform distribution in the unit interval. This procedure is 

feasible if it turns out that a reasonable fraction of the configura- 

tions generated in (2.76a) actually satisfies (2.76b). As we shall prove 

later [cf. (2.96)], this fraction is in fact given by 

-> acceptable configurations _ / L - Na \ ,« ,, v 
»■' trial configurations    \ L - a/ 

For N=100, a=l and L=200 this acceptance ratio is (100/199)100=1.3*10 30, 

which is clearly too small by any standard. 

Since the simple rejection generating method just outlined is not 

generally feasible, let us try to devise an algorithm based on the in- 

version generating method. First, though, let us restate the problem in 

a way which shows clearly that we are xn fact trying to generate a "point1 

randomly and uniformly inside a given "region". 

Imagine the rods to be laid out on the x-axis in the interval (0,L) 

in any non-overlapping configuration. Let the rods be numbered from 

62 

mm 



right to left, so that the nearest rod to the left of rod k Is always 

rod kH, and let x, locate the center of rod k [see Fig. 5]. Now 

regard the N variables x^x«,...,^ as Cartesian coordinates in an N- 

dlitensional hyperspace. Any point in this hyperspace specifies through 

the values of its coordinates a "configuration" of the rods; however, 

not every point in this space will satisfy the requirements that the rods 

be non-overlapping and that the rods be numbered in order from right to 

left. Let Q be defined as the set of all points (x-.x«,... ,0 in the 

N-dimensional configuration space which cto satisfy these two requirements; 

thus, il  is defined by [see Fig, 5] 

C: =  {(xrx2,...,xN)!|xk+1+ a < xk < x^- a, k«l N} (2.77) 

where x and x..,, are defined by 
o     N+l J 

x = L + a/2 
o 

xm = -a/2 

(2.78) 

(2.79) 

With (2.78) and (2.79) the conditions x <xo-a and x^ +a<x^ in (2.77) 

become respectively 

x < L - a/2  and  xN > a/2 

which conditions evidently insure that rod 1 lies inside the right 

boundary and rod N lies inside the left boundary [see Fig. 5]. 

Simply stated, our problem is to generate a point randomly and 

uniformly inside the N-dimensional region ft; that is, we wish to generate 

a random N--tuple (x., .,.,XT) according to the density function 
1 X 

63 

tsMtntmstimsM 
i  ^-^-^'^-totiuisiikv, , 'Mi 



a 

N+l 

FIGURL 5.  N non-overlapping rods of equal 

length a on a line of length L. 
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P(x1,....xN) 
1^1", if (x1,...fxN)eß 

0 , if (x1....,xN)^ 
(2.80) 

where \ü\   is  the volume of the region ft. Our procedure will be to use 

the generalized inversion method as described in Sections 2-5 and 2-6. 

For this we shall first need to conduct a detailed analysis of the mathe- 

matical properties of the region ft. 

Consider first the variable xN. From Fig. 5 it is clear that the 

minimum possible value for xN is a/2=xN..+a; the maximum possible value 

for xN occurs when the other (N-l) rods are jammed against the right 

wall, and is L-(N-l)a-a/2=L . For any given xM in the interval (x„.,+a,LN), 

the minimum possible value for x . is x +a; the maximum possible value 

for x - occurs when the remaining (N-2) rods are jammed against the 

right wall, and is L-(N-2)a-a/2rL  . Continuinf; ^ith this line of 

reasoning, we see that the volume ft defined in (2.77) can also be specified 

in the following way: 

ft = {(x1,...,xN)|| xk+1 + a < xk < Lk, k-l,...,N}      (2.81) 

where the constants L, are given by 

Lk E L - (k-l)a-a/2, k-1,2,... ,N+1 (2.82) 

or equivalently by the recursive formulae 

1^ = L - a/2 

Lk+1 = Lk '' a, k=1'2"--'N 

(2.83a) 

(2.83b) 
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[We allow (2.82) and (2.83) to define the quantity LN+1 which, although 

not appearing in (2.81), will be convenient for later formulae.] 

The advantage of (2.81) over (2.77) is that it "orders" the coordinates 

in the manner of (2.31a), thereby allowing us to employ the techniques 

outlined in Sec. 2-6. 

The volume ]^| is given by the N-fold integral 

4      Hl-l        "1 
W   = /   % J  dVl .../ dx1 

XN+l+a   V* 
(2.84) 

x2+a 

The unconditioned density function for x^ is given by [cf. (2.22a), 

(2.80) and (2.81)] 

P(xN) 
'N-l    LN-2 "1 

XN-l+a 

-1 

XN+a 
x2+a 

(2.85a) 

The density function for x, conditioned on \+1*  \+2, ••,, 'V for 

2<kCN-l is given by [cf. (2.22b), (2.80), (2.81)] 

Jk-1 

P(xk'Xk4-l,,",XN) 
xy.-Ha 
J  dx^.../ i dx1 \ti 

-1 

x^+a 

-1 -k     Vi        h 
/      dxj    dxk-1...J    dxjQ 

Xk+l+a      Xk+a X2+a 

(2.85b) 

And the density function for xl  conditioned on x^x^...^ is given by 

[cf. (2.22c), (2.80) and (2.81)] 

66 



P^IV-'V-L: '''" i (2,85c) 

x2+a 
1 

In order to calculate the foregoing quantities, it is convenient to introduce 

the auxiliary quantities Vft, V-, .,., V defined by 

V0 E 1 (2.86a) 

Lk     Lk-1      Ll 
Vk = /   dxk / dxkl.../ dx1.  k«1.2 N       (2.86b) 

xk+1+a  xk4a      x2+a 

In terms of the quantities V. we have from (2,84) 

tß| = VM (2.87) 
N 

and from (2.85a) - (2.85c) 

P(xkixk+1,...txN) « Vk.1/Vk.  k.l.2f...,N (2.88) 

provided, for k-N, P^ lxk+1» • • • »xN) is understood to represent P(x ). 

Next we shall derive an explicit formula for V so that the important 

quantities above can be calculated. 

For k=l we have 

Ll 
yi = 1    **i  = Li " (x2+ a) s ^Li" a) ~ x2 = L2" x2 

x .a 

where in ttie ia&L step we invoked   (2.83b).    Thus, 

V1 = ij-^- x^1 

Now suppose that, for any ku, V^ is given by 
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Vk ^ k! (Lk+r Xk+1) 
(2.89) 

Then from (2.86b) we have 

Lk+i       l hc+l k 

W s I x 
dxk+i

vks rr /    (Lk+r Vi) dxk+i 
Xk+2

+a Xk+2
+a 

~hr! 
Lk+i~ Lk+i 

Lk+r
(xk+2+a) 

z (-dz) - ry i 

Lk+l"a"Xk+2 
z dz 

.  k+1 L. z 
k! k+1 

Lk+l"a"xk+2 
1   n .k+1 

(k+1)! ^k+l" a " Xk+2; 

or 

V 
1   r        .k+1 

i!^Lk+?  Xk+2; k+1  (k+l)!vk+2  k+2; 

where in the second line we put z=Lk .- x,., and in the last line we 

used (2.83b). We have thus proved by induction that (2.89) holds for 

all k^l; furthermore, it is seen that for k=0 (2.89) gives V =1, in agree- 

ment with the definition in (2.86a). Therefore, (2.89) gives Vk for all 

values of k as defined in (2.86a) and (2.86b). 

Inserting (2.89) into (2.87), and invoking the definitions of 

L ^ and x .- in (2.82) and (2.79), we find 
n+1     n+i 

m = VN ~ (LN+1 XN+1 )
N/N! (L - Na - | + |)N/N! 

so 

\ü\   -(L - Na)N/N! (2.90) 
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Inserting  (2.89)  into  (2.88) we find 

P, i ,   vk-i   (Lk-\)k"1/(k-1)! 

ak+i \+i' ' 

or 

P(xk|xk+1.....xN)  E P(xk|xk+1)  « -—i -^ x,)^1        (2.91) 
(Lk+r xk+i) 

where we have observed that the density function for x, conditioned on 

x. .,, x, «, .,., XM is in fact independent of x, «» •••» XN» 
T^e physical 

reason for this is that the left boundary for rod k is determined solely 

by the position of rod k+1, and is independent of the positions of all 

rods to the left of rod k+1. It is of course understood that (2.91) gives 

P(x.|x, ...... ,xN) only for x, in the interval (x, ..+a, L. ), as prescribed 

by (2.81); the density function vanishes identically for x. outside this 

interval.  The formula (2.91) is valid for all k=l,2,...,N provided we 

keep in mind that, when k-N, the density function is to be regarded as 

p(V- 
Chr' next step is to calculate the one-variable distribution functions 

F(x, |x, ,) corresponding to the one-variable density functions P(x, |x. -) 

in (2.91).  Following (2.23) we have 

Xk ,       Xk 
.iv^-l. F(xk|xk+1) ~= /  P(x'|xk+l)dx' = .   I (V x^) - dx^ 

xk+1+a 
(W W xk+1+a 

With a change of variable z=U-x*  the integration is easily accomplished. 

Using (2.83b) the result takes the form 
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r/     I ^       !     /   Lk" Xk    \ (2.92) 
k k+1       \Lk+r xk+i/ 

which, as before, holds for x, in the interval (x. ..+3, L, ) and for all 

k»l,2,...,N. As a check, one can easily verify that F(x, |x, ,) equals 

zero at the lower limit of x, [cf. (2.83b)] and equals unity at the upper 

limit of x, . 
k 

We are now in a position to apply the generalized inversion method 

described in connection with Eqs. (2.29). Thus, we pick N random numbers 

r-jT«»...»r.. from the uniform distribution in the unit interval, and we 

solve the equations 

rk = ^IW (2-93) 

for x, in the order k=N,N-l,...,2,1 as dictated by our conditioning pro- 

cedure.  Substituting (2,92) into (2.93), and recognizing that 1-r, can 

be replaced by r, (since both are uniformly distributed random numbers 

in the unit interval) we have 

Vxk xk 

lLk+i'" xk+i7     k 

Solving for x, gives the final generating formula: 

1/k 
xk = Lk-(Lk+r

xk+i)rk   -   W-1.....1 (2-94) 

Therefore, the procedure for generating an ordered, non-overlapping 

but otherwise uniform random configuration of N rods of length a inside 
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Lhe x axis interval (0,L) is as follows: First calculate (and store 

if more than one configuration is to be generated) the N-l-2 constants 

xN+1, L^, L2,..., L   in accordance with (2.79) and (2.82) or (2.83). 

Then draw N random numbers r,, r«, ...» rM from the uniform distribution 

in the unit interval, and compute x. , the location of the center of rod k, 

from the formula in (2.94) for the successive k values N,N-1,...,2,1. 

Notice that (2.94) is to be applied in order of descending k, because 

the formula for x, requires a value for x, .i• Essentially, (2.94) just 

"deals" the rods out on the interval (0,L) from left to right, and our 

theory assures us that the resultant configuration is acceptable without 

any further checking. 

The rejection technique described in connection with Eqs. (2.76) 

evidently generates random points uniformly inside the M-dimensional 

box 

Z -  {(x],...,xN)|| f * xk < L - | , k=l,...,N} (2.95) 

and then rejects those points which do not also lie inside Q (which is 

clearly a subregion of Z). The efficiency of this method is 

r  ifti_ a - Na)N/N! 

" |E' "   (L-a)N 

or 

The factor 1/N! in (2.96) simply reflects the fact that the x,-values 

generated by this method are generally not ordered according to x >x >...>x ; 
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hence, the second factor in (2.96) accounts for the no-overlap ac- 

ceptance ratio, which we have anticipated in (2.76c). If we had a=0, 

so that we would be generating N points randomly and uniformly inside 

(0,L), then overlap would clearly not be a problem; however, if it is 

important to have the points ordered, then the inversion method would 

still be preferable for large N in that it evidently accomplishes this 

ordering automatically. 

The generating method developed here can be easily extended to gen- 

erate a random, uniform distribution of equal-length, non-overlapping 

rods (or more precisely "arcs") around the.  boundary of a circle. Again 

denoting the length of each rod by a, it will be seen from Fig. 6 that 

the problem of N rods on a line of length L is equivalent to the problem 

of N+l rods on a circle of circumference OL+a or radius 

R = (L+a)/27T (2.97) 

Essentially, the edges of the first rod laid down (rod N+l) form the bound- 

aries of the line segment 0<x<L, which we imagine to be wrapped around 

the circle as shown in Fig. 6.  Thus, letting the angle 6. locate the center 

of rod k relative to any chosen axis, we first locate rod N+l by putting 

0N+1 = 2wrN+1 (2.98a) 

where r ., is a random number from the uniform distribution in the unit 
N+l 

interval. Then letting x measure the circumferential length from the 

leading edge of rod N+l (x-0) to its trailing edge (x-C-a-L), we proceed 
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v*^r 

<*0 

6-0 axis 

FIGURE 6.  N+l non-overlapping rods of equal 

length a on the circumference of a 

circle of radius R=(L+a)/27T, 
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to distribute the remaining N rods in 0<x<L as before. Thus, the 

angular location of rod k is [see Fig. 6] 

ek ' eN+l + (a/2 + V^'  ^N^-1»---»1 (2.98b) 

where x, is generated according to (2.94). 

As a final comment, and in anticipation of the development to be 

presented in the next chapter, we might point out that the generating 

algorithm developed in this section has potential applicability in the 

calculation of the thermodynamic properties of a "one-dimensional gas 

of hard-core rods". This is the one-dimensional analogue of a (non-ideal) 

gas composed of spherically symmetric molecules, which are assumed to have 

the property that an infinite repulsive force develops between any two 

molecules when the distance between their centers becomes equal to some 

fixed value a>0; a is called the "hard core diameter" of the molecules. 

Suppose a one-dimensional gas of N rods with hard-core diameter a is 

enclosed in the "volume" CKx^L, and is allowed to come to thermodynamic 

equilibrium with its surroundings at some absolute temperature T. The 

theory of statistical mechanics then tells us that the equilibrium value 

of any dynamical quantity f which depends only on the positions of the 

rods may be calculated as 

J0 f(5?)exp[-UO?)/kT]d5c 
<f>      « -^  (2.99) 

e<5 J^expt-UC^/kTldl? 

Here,  xs(x1,x9,...,x )  denotes a point  in the allowable configuration 
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space of the gas, which evidently is precisely the volume Ü  in (2.77); 

fit)  is the value of the dynamical quantity f for the configuration x; 

U(x) is the total potential energy of the rods for the configuration x; 

and k is Boltzmam^s constant. Analytical evaluations of the integrals 

in (2.99) have been successfully carried out for certain special forms of 

f(x) and U(x). However, as we shall see in the next chapter, the avail- 

ability of an efficient algorithm for generating points x randomly and 

uniformly inside Q  opens up the possibility of numerically estimating 

these integrals by Monte Carlo methods for rather general forms of f(x) 

and U(x). A drawback of the Monte Carlo approach, as compared to a purely 

analytical approach, is that the dependence of (f)  on such external 

parameters as T, N and L can be inferred only by making separate calcula- 

tions at specified values of these parameters; in addition, limitations 

on computation time will clearly place an upper limit on the size of N. 

Nevertheless, in cases where an analytical calculation simply cannot be 

effected, a series of Monte Carlo calculations, however restricted, may 

yield useful and otherwise unobtainable information. 
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Chapter 3 

MONTE CARLO ESTIMATION OF INTEGRALS 

3-1. Averages and Integrals 

Let f(x) denote any bounded function defined in the n-dimensional 

space of the variable x^Cx^.x®,...»JO , and let P(x) denote a probability 

density function defined in this same space. We define "the average of f(x) 

taken over the set of random points {x.l distributed according to the 

.1. 

density function P(x)M by' 

i=l 

whenever the limit exists.  It is important to recognize that the average 

of f(x) depends not only on the function f but also on the density function P 

which defines the set of random points (x.) over which the average is taken. 

Thus, if we denoted the average of f by simply ^f^ our notation would be 

ambiguous and incomplete. 

In the limit of sufficiently large N we may expect that P(x)dx 

accurately represents the fraction of the random points x,. ,*„,...,}? being 

summed over in (3.1) which falls inside the infinitesimal region dx centered 

Throughout this paper, the colon ":" within a mathematical expression can 

be verbalized as "with respect to". Thus, for example, (f :P) is read 

"the average of f(x) with respect to the density function P(x)". 
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at the point x. Therefore, in the limit of large N the contribution to 

the sum on the right side of (3.1) due to prints x. which lie inside dx 

at t  is just f(x)xNP(x)dx. The sum in (3.1) can thus be calculated by 

summing (integrating) this quantity over all such infinitesimal regions 

in x-space: 

N 
(lira ***»::  I  f(x ) - Jf(5?)NP(x)dx (3.2) 

i-1 

Dividing through by N and comparing vith (3.1) gives the important result 

/f«)P(«)d5f « <f:P> (3.3) 
00 

This result says that the integral of the quantity f(x)P(x) over all 

x-space is equal to the  average of f(x) taken with respect to the set of 

random points {x.} distributed according to the density function P(x). 

It forms the basis for the "Monte Carl'" method" of evaluating a precisely 

defined definite integral as an average taken over a suitable set of random 

points.  In particular, suppose the density function P(x) defines the set 

of random points (x.l distributed uniformly over some given finite region 

Q.  of x-space; i.e., suppose P(35) is given by 

Po(*) = 

|ß|  ,  if xeTl 
(3.4) 

0  ,  if xtQ 

where |Sq is the volume of Q.  Then we have from (3.3) and (3.A) 

i-l.- <f:p^ - JfOc)pßo?)d^= !f&)\n\-ldt 
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whence 

/f(3?)<l$= N<f:Pn'> (3-5) 
j L 

Thus, the integral of f(x) over the region Ü  is equal to the volume of 

ü  times the average of f(x) with respect to the set of random points 

{x.} distributed uniformly over Ü.    This result is evidently a special 

case of (3.3). 

If we could actually calculate the average {f:P) as defined in (3.1), 

then (3.3) would provide us with our Monte Carlo method for calculating 

definite integrals, and our story would be finished.  In practice, of 

course, ail we can really do is calculate quantities such as 

<f:P>N = \ I  f^) (3-6> 
i=l 

for some finite N.     Since by definition   '^f tlj^/f :P)as N-^0,  then we may 

expect that  if  N is taken "fairly large" 

<f:P)N =  <f:P>. (3.7) 

so that the integral on the left of (3.3)is given approximately by the 

N-term average on the right of (3.6).  But how good is this approximation? 

Clearly the approximation is worthless from a practical point of view 

unless we can give a meaningful estimate of its associated uncertainty. 

This important matter is the w^pic of the next section. 
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3-2. Fluctuations and Uncertainties 

The short derivation of (3.3) given In the preceding section Is 

useful for conveying an intuitive feeling for the central idea of the 

Monte Carlo method, but it is of little practical use in view of the 

fact that we can calculate only (f:P)N in (3.6) and not (f:?) in (3.1). 

In fact, the goodness of the approximation in (3.7) can be obtained only 

by resorting to a famous but difficult-to-prove result in probability 

theory called the Central Limit Theorem. In order to state this theorem 

and to see how it applies to our problem here, it is first necessary to 

introduce a few concepts and definitions from probability theory. 

Suppose we have a set of random real numbers {y } distributed according 

to some density function ?(y).  If g(y) is any function of y, then, as we 

have seen in (3.1)-(3.3), the average of g(y) over the set ^y.} is given by 

(g:S*> E ^ I I  g(yj) =jfg(y)?(y)dy (3.8) 

ID particular, we define the mean m and variance a2 of the set {y.} to 

be the averages over {y.} of the respective functions g(y)3Sy and g(y)*s(y^m) , 

assuming as we do that these averages exist: 

K 

*^<y^^iUr.!fWdy (3'9) 

a2 =  <(y-m)2:P> ^ I J (y^ m)2 = /(y-m)2P(y)dy    (3.10a) 

By expanding the square in (3.10a) it is easy to show that the variance 

can also be written as the difference between the average of the square 
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of y and the square of the average of y: 

00 

o2  = Jy2P(y)dy - m2 - <y2:P> - (y:$)2 (3.10b) 
• 00 

The square root of the variance, namely a, is called the root-mean-square 

(or rms or standard) deviation of the set {y.,}.  If the graph of ?(y)-versus-y 

consists mainly of a single hump, as is shown in Fig, 7, then (3.9) and (3.10a) 

imply that m and a  characterize respectively the "center" and "width" of the 

graph; roughly speaking, we may "reasonably expect" that a randomly drawn 

number from the set (y.) will lie somewhere between m-otG and m-Kxa, where a is 

of order unity. 

Now, suppose we construct from the set (y^.} another set of random numbers 

(y. 7 according to the rule 

yf0- (y1 
+ y2 + ••• + yN)/

N (3-11) 

Thar is, each element of the set {y^""f is the simple average of N randomly t {yf} 

drawn elements of the set {y.K  We now ask, what can be said concerning the 

distribution of the set {y. 7? 

In Appendix C [cf. (CU-4)-(Ck16) ] we derive a partial answer to this 

question:  the mean and rms deviation of the set {y. 7 are equal to m and 

a//N respectively, where m and a are as before the mean and rms deviation 

of the original set {y.}.  However, for Monte Carlo purposes it is necessary 

to have a somewhat more detailed knowledge of the distribution of the set 

{y.1}; specifically, we would like to be able to translate the rms deviation 

a//N of this set into a specification of numerical confidence limits. For 

this we must resort to the Central Limit Theorem [see p. 244 of Ref. 8], 
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p(y) 

FIGURE 7,  Illustrating the geometrical significance of 

the mean m and rms deviation c of a set of 

random numbers {y.J with density function P(y) 

81 



which says in effect that in the limit of large N the set (yl 7 becomes 

a Gaussian (or "normal") distribution, with (as just asserted) mean m 

and rms deviation a//N, More precisely, the Central Limit Theorem asserts 

that 

^ Prob||y;N)-mU a^l = JJ/exp(-t
2/2)dt 

-a 

0.683 for a=l 
0.955 for a-2 
0.997 for a=3 (3.12) 

Thus, for example, provided N is sufficiently large the probability that 

the average of N randomly drawn elements from the set {y.} will lie between 

m-2a//N and m+2a//N is 0.955, where m and a are respectively the mean and 

rms deviation cf {y.}. The power of this result is that it holds irrespective 

of the form of the density function P(y) of {y.}. However, the Central 

Limit Theorem also has a notable limitation:  it does not specify how large 

N must be in order that the lim symbol in (3.12) can be ignoied for practical 

purposes. Presumably, the rate of approach to the limit in (3.12) will 

depend in some complicated way upon specific form of the density function 

P(y), but the Central Limit Theorem gives us no information in this regard. 

Now let us see how the foregoing results allow us to quantitatively 

estimate the uncertainty associated with the crucial approximation (3.7). 

Essentially we have taken a set of random points (x.) distributed in 

n-dimensional space according to the density function P(x), and we have 

constructed a set of random numbers {y.} by subjecting {x } to the 
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transformation 

y » f 0?) (3.13) 

This set of random numbers {y.} will have some density function PCy), the 

form of which Is completely determined by the two functions P(x) and f(x). 

In practice, It Is virtually Impossible to calculate the shape of ?(y) 

analytically from P(3() and f(x); just to Illustrate what would be involved 

In such a calculation, we sketch In Fig. 8c the density function P(y) 

which would result in the case where x is one-dimensional and the functions 

+ 
P(x) and f(x) are those sketched in Figs. 8a and 8b respectively'.  But in 

Given a set of random points {x } distributed according to the density function 

P(x) in Fig. 8a, then the transformation y = f(x) in Fig. Bb produces a set of 

random numbers {y.} whose density function P(y) is obtained from the general 

rule P(y)dy=P(x)dx—i.e., P(y)-P(x)/|f*(x)| where x-f~ (y) with proper account 

being taken of the multi-valuedness of the inverse function f x(y). Thus, for 

Figs. 8a and 8b we have 

P(y) - Pi(y) + PzCv) 

where   P](y) ~ 

and 

P(x)/|f,(x)|, for x<C 
0     , for x>£; 

0     , for x<£; 
P(x)/|f'(x)|, for x>C 

The resultant P(y) is sketched in Fig. 8c. The jump discontinuity in P(y) 

at y=B is due v.o the fact that the interval B<y<C is fully populated by y.'s 

coming, not only from x.'s in the interval a<x<^, but also from x 's in the 

luterval ^<x<C,. The infinite peak in ?(y) at y^C is due to the fact that 

f,(^)as0. The hump in P(y) near y=A is a reflection of the hump in P(x) near 

x^b, 
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(8a) 

*—► x 

(8b) 

- x 

W 

P(y) 

(8c) 

*- y 

FIGURE 8.  Illustrating how the density function P(y) of the values 

y=f(x) is determined by the density function P(x) and the 

function f(x), in a simple case in which x is one-dimensional, 

(See footnote on p. 83.) 
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an> rase, it is clear that the mean m of the set (y.)—i.e., the "center" 

of the curve of ?(y)-versu8-y—coincides with the average of f(x) with 

respect to the set {x.}: 

Similarly, the rms deviation a of the set {y.}—i.e., the "width" of the 

curve of P(y)-v^rsus~y—is given by 

a ^<y2:P>-<y:P>J' - J{iz:?)  - <f:P)2 (3.14b) 

And finally, the average y. of N random elements of {y } is seen to coincide 

with the calculated quantity (f:?") : 

yiNHlyj=Mif (*j) E <f:p>N (3-l4c) 

In view of Eqs.   (3.14) we thus see that the Central Limit Theorem in (3.12) 

implies that 

lim Prohl|<f:P>    - <f:P)| ^ ^rU JJ   Jexp(-t2/2)dt        (3.15) 

where        a = ^f2^) - <f:P)2 (3.16) 

In essence, then, we may say that for N sufficiently large the approxima- 

tion in (3,7) has a Gaussian rms uncertainty of o//N, where a is given by 

(3.16), Of course, since we do not know ^f:P) beforehand, much less ^f2:P^, 

then it is clear that we do not know 0 beforehand either. However, if N 

is sufficiently large so that tne approximation {f:P>)N - ^
f:P) is good, thta 

85 



then we may also put ^f2:P)    - ^f2:P), and thereby take 

W<f2:PV<f:P>J (3.17) 

as a sufficiently accurate approximation to c for the purposes of (3.15). 

In summary, then, we have the following "Golden Rule of Monte Carlo": 

If xi, xz,...,^ are N random points distributed according to the probability 

density function P(x), and if for a given function f(x) we put 

<f:P>N H | jh(^ and <^:P>N . | j^) 

then provided N Is sufficiently large we have 

^:P)N-<f< 

(3.18) 

lt&)?imt - <f:P)N ± 
M 

(3.19) 

The ± quantity in (3.19) is understood to correspond to a "65% confidence 

interval"f and should thus be typical of the average spread between several 

independent evaluations of ^f rP) . If we double the ± uncertainty in (3.19) 

we obtain a "95% confidence interval", which is perhaps a more suitable 

uncertainty to use when asserting a value for the integral; and if we 

treble the ± uncertainty, we obtain an even more conservative "99% confidence 

interval".  Note that in the limit N-*» (3.19) indeed goes over into (3.3). 

3-3. operational Procedures 

In what follows we shall assume that we are presented with the problem 

of integrating a bounded function f(x) over a finite region Ü  in n-dimensional 

x-space.  Now, 
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a 

or 

Jf(^)d$ - |ß|Jf(x)Pß(x)dx 
Ü 

(3.20) 

„here |ß| is the volume of « and P.C*) is the density function (3.4) defining 

the uniform distribution of random points inside ß. Substituting (3.19) 

into the right side of (3.20) then yields the result 

Jf (x)d3c =  Iß 
ß 

<f :Pß>N * 
J¥*Sröj*Si 

S 
(3.21) 

The procedure for numerically estimating the integral of a bounded 

function f(^) over a finite region Q of x-space therefore consists of the 

following steps, which we state in the "iterative language" of linear 

computer programming: 

1° Initialize Si«0, Sa^O, i«0, \ 

2° Generate a random poirt x from the uniform distribution inside Ü  [i.e., 

according to the density function PQ(X) in (3.4)]. 

3° Evaluate y«f(x) for the generated poin.. x. 

4° Put Si»Si+y, Sz-Sz+y2. i-i+1. 

5° If i<N, where N is as large an integer as practical, return to step 2°; 

if i^N go to step 6°. 

6° Put (ftPgV^Si/N and <f2:P~) »Sz/N, and obtain the Monte Carlo estimate 

of the integral from (3.21). Remember that the ± uncertainty in 

(3.21) represents a 65% confidence interval; in a final quotation it 

is usually best o double this uncertainty to obtain a 95% confidence 

interval. 

\(3.22) 
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The foregoing steps are schematized in the flow diagram of Fig. 9. 

It will be observed that the above procedure always yields numerical 

results for the estimate and its associated uncertainty, even if N has not 

been chosen large enough to satisfy the limit requirement in (3.15) and the 

a approximation in (3.17).  It is important to realize that, unless N is 

large enough for these two approximations to be valid, then one may not 

assert that the calculated estimate is indeed accurate to within tho cal- 

culated uncertainty with the numerical confidence limits prescribed in 

(3.12). Unfortunately, there is no way of telling from the results of a 

single Monte Carlo calculation whether N has been taken large enough to 

produce reliable results. One fairly convenient way of checking this im- 

portant point is to proceed as follows: Choose a value of N such that one 

can afford to perform the Monte Carlo calculation four times, each time 

using a different set of N random points.  If the uncertainties obtained 

in these four runs agree to within better than 10% (i.e., to within at least 

the first significant digit), and if further the four esHmates each differ 

from their average by no more than roughly twice the uncertainty, then one 

usually can accept these results subject to the confidence limits pre- 

scribed in (3.12). One may then quote as the estimate of the integral 

the average of the estimates found in the four separate runs.  Since this 

average evidently corresponds to a total of 4N points, then its one-standard 

deviation uncertainty will be exactly half that of the individual runs; 

thus, the one-standard deviation uncertainty found in the four individual 

runs may be quoted as the two-standard deviation uncertainty (giving 95% 
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1 Start  1 

Si - 0 

82 - 0 1 

j i - 0 

Generate a random point x from a 

uniform distribution inside ü. 

yes 

ftat)dt * 

Ai = Si/N 

A2 = S2/N 

N (. . ^) 

FIGURE 9. Flow diagram of the basic steps involved in the 

Monte Carlo evaluation of an integral. 
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confidence limits) for the average of the estimates found in the individual 

t 
runs. 

If, on the other hand, the results of the four repeated Monte Carlo runs 

are not mutually compatible in the sense described above, then one should 

tentatively assume that N is not large enough to produce reliable results. 

If increasing N fails to improve the situation, then one should suspect the 

existence of either (1) a programming error, or (ii) a singularity in the 

integrand. The latter circumstance is of course intolerable; for, if f(x) 

approaches infinity as x approaches some point x in Ü  (but in such a way 

that /^f(5)d3c is nevertheless finite), then the Monte Carlo estimate of the 

incegral can be arbitrarily large, depending solely upon how close one happens 

to come to "a while picking points at random in G. 

Our main point here, though, is that the entire Monte Carlo method is 

predicated on the assumption that the number of random points sampled is 

"sufficiently large"; therefore, one should never accept the numerical re- 

sults of the computational procedure (3.22)[or Fig. 9] without being reason- 

ably confident that N is indeed "sufficiently large". One way of checking 

this point, as suggested above, is to require consistency amon«^ the results 

of several repeated calculations. In the sequel, we shall always assume that 

this or some equivalent check has been performed. 

An additional advantage of splitting a AN-point Monte Carlo run into four 

separate N-point runs is that it considerably reduces the possible loss 

which might result from a computer malfunction or control card error. 
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A common source of difficulty In executing the six-step procedure of 

(3.22) Is generating a random point from a uniform distribution Inside Ü 

(Step 2°). If ß Is a box-like region then the calculation of \ti\  and the 

generation of random points uniformly Inside Ü  Is very easy [cf. (2.35]. 

However, It frequently happens that Ü  Is not a box-like region, and that 

we are not able to calculate |ft|; this will usually be the case If ß Is 

defined by a set of Inequalities Involving various functions of the compo- 

nents of x which are not "neatly ordered" as in (2.31a). In such a case 

the following procedure can sometimes be used. Find some box-like region 

Z which completely encloses ß, and define a new function g(x) in Z which 

coincides with f inside Q but which vanishes outside Q: 

Z (box-like) encloses ti 

^ =|f(S), if Sefi 
gw '10 , if x^ 

(3.23) 

Clearly, the Integral of g(x) over Z  is equal to the integral of f(x) 

over Ü;  thus, the procedure (3.22) can be carried out with f and ti  re- 

placed by g and Z respectively, and (3.21) becomes 

/f#)d3f ^ |Z| 
a <^>K *  ^  (3.24) 

Of course, we should not expect this procedure to be very efficient if 

|ßj«|Z|, and for this reason we should always take Z to be the smallest 

box enclosing n. 

A frequently useful example of the foregoing procedure is the calcula- 

tion of the volume M itself. Since 
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/l-dS - \ü\ 
u 

then we have from (3.23) and (3.24) 

|ß| * |E| <t:?z\±S<SZ'-h\ ~(*'-?Jl 

,-, _ j 1, if ttü 
where    g(x) = | ^  if ^ 

(3.25a) 

(3.25b) 

Now suppose that, of the N points generated randomly and uniformly inside I, 

M of them are found to fall inside Q.  It follows from (3.25b) that the sums 

Si and Si  computed in accordance with Step 4° of (3.22) will both equal M, 

so that in Step 6° we will find 

<g:PE>N = <g
2:Pz>N = M/N (3.26) 

Substituting into  (3.25a)  yields the result 

N -fNli - V  N'M (3.27) 

where, again, of N uniformly istributed random points inside Z, M are 

found to lie inside Ü.    According to {3.27)9   \ü\   is given approximately 

by (M/N)|E|, just as we expect. But (3.27) also provides us with an 

estimate of the uncertainty in this approximation. Evidently, the relative 

uncertainty is equal to 1//N times the square root or the ratio of the 

number of "miss points" N-M to the number of "hit points" M; therefore, 

as mentioned earlier, the uncertainty will be large if M«N, or |Q|«|l|. 
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In fact, by putting M/N - |ß|/|z| in the relative uncertainty term in 

(3.27)» it is easy to show that if \ü\  is u(>l) orders of magnitude smaller 

than |£|, then N will have to be of order n+2 to obtain an estimate of 

|ß| having a 10% relative uncertainty, and of order n+4 to obtain an 

estimate having a 1% relative uncertainty. 

Returning to the problem of Integrating a general function f(x) over 

a non-box region ft, suppose the volume \ü\   i£ known exactly, but that it 

is nevertheless not practical to generate uniformly distributed random 

points < inside ft by the direct (inversion) method.  In such a case one 

could of course still use the box-method described in connection with 

(3.23) and (3.24); alternatively, one could use (3.21) in conjunction 

with the rejection method for generating random points uniformly inside 

ft. Thus, using the same enclosing box £ as in (3.23) and (3.24), suppose 

that, of N random points generated uniformly Inside the box Z, M are found 

to fall inside ft. Then these latter M points can be used to calculate the 

quantities (f:pJ) and ^f2:Pj) , and we may put in accordance ..ith (3.21) 

/f(?)d3?* 
ft 

Ift 
f/Vf

2:P0> - <f:P^ 

ft'M 
(3.28) 

It is interesting to compare ehe approach of (3.28) with that of (3.24). 

Given th^  precise values of both volumes |ft] and |E|, it should be obvious 

that calculating accoruing to (3.28) involves exactly the same amount of 

work as calculating according to (3.24); indeed, it is citar that the 

sums Si and S2 calculated in Step 4° of (3.22) will be the same for (3.28) 
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as for (3.24), because the N-M points x. not used in these sums for 

(3.28) contribute zero to these sums for (3.24). In termf of these common 

sums Si and S2, (3.24) and (3.28) can be written respectively as 

/f(äf)dS=  lE||i(l±^-il\ (3.29a) 

and 

/f(*)<** I^MlH ^  v  ' ""'M  r " \|Si      M / (3.29b) 

Since in the limit N-*», we expect |^|/|s| » M/N, then the averages or central 

values in (3.29a) and (3.29b) are indeed consistent. But as M is always less 

than N, then the relative uncertainty in (3.29b) is always less than that 

in (3.29a).  If f(x) is approximately constant in Ü  we will have S1-MS2, so 

that the relative uncertainty in (3.29a) will la approximately that given 

in (3.27) whereas the relative uncertainty in (3.29b) will be approximately 

zero. Thus, if \ü\   is known exactly, then it is usually a bit more efficient 

to make use of this knowledge and proceed via (3.28) rather than via (3.24). 

If the volume of Q  is very much smaller than the volume of the smallest 

box I which encloses üt  then clearly neither (3.28) nor (2.34) will be 

satisfactory.  In such a case one should endeavor to calculate |^| analyt- 

ically, and in the process also calculate the distribution functions V(ji^)t 

F(xI2V1>) F(xn>|xfl\. ., A*'**)  which allow one to use the generalized 

inversion method for directly generating random points x. uniformly inside Ö 

94 



WMMWWHWiWI «Wwanww» 
giMmmw-^-^B 

[cf. (2.34) and (7.29]. Alternatively, one can try to find some trans- 

formation of variables IH^ which carries the region ß irto a more suitably 

shaped region ft'. Given such a transformation (take n«3 for concreteness), 

x1 » xf(x.ytz) 

yf - y^x.yjz) > 

z* » zr(x,y,z) 

(3.30a) 

one could then express the given Integral as an integral ove: Q1 according 

to [cf. (B.9)] 

//Jf(x.y,z)dxdydz « J//f(x,y,z) Tfp—T-T,  dxMyMz' 

= //^(x'.y'.zMdxMy'dz1 (3.30b) 
ß1 

Here, the last step is carried out after solving (3.30a) for x, y and z in 

terms of x1, y1 and z*. It is interesting to note that the inversion method 

for generating random points uniformly inside fi, in which one calculates 

the one-dimensional distribution functions F(x), F(y|x), F(z|x,y) for the 

uniform density function P^(x,y,z) and puts 

ri « F(x) 

T2  * F(y|x) 

ra =  F(z|xty) 

(3.31a) 

can also be regarded as a transformation of variables from xyz-space to 

rirzra-space. This transformation has the special properties that (i) the 
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region Ü  in xyz-space Is transformed into the unit cube in ri^rs-space, 

and (ii) the Jacobian of the transformation is simply [cf. (2.30) and 

(2.32)] 

9(x,y,z)  a   1    ^ 1 
9(ri,r2,r3)  Pß(x,y,z)  "* Jfif1 

(3.31b) 

There are, of course, many transformations which will carry ß into a unit 

cube, but (3.31a) is the only one of these that has a constant Jacobian. 

Another transformation to the unit cube which can be applied whenever Q 

is specified as in (2,31a) is the simple "linear stretching" transformation 

ri = [x - ai]/[bi - ai] 

r2 - ly - a2(x)]/{b2(x) - aj(x)3 

ra = [z - a3(x,y)]/[b3(x,y) - a3(x,y)j 

the Jacobian of which is easily calculated as 

3(x,y,z) 

(3.32a) 

9(ri,r2,rO 
= [bi - a1][b2(x) - a2(x)l[b3(x,y) - a3(x,y)]  (3.32b) 

Whether (3.31a) or (3.32a) is the better transformation to the unit cube 

depends on the form of the integrand, as we shall see more cl arly in our 

discussion of "importance sampling" in Sees. 4-5 and 4-6. 

If, in the case where the volume of 2  is extremely small compared to 

the volame of the smallest box enclosing Ü,  all efforts at inversion 

generating and variables transformation fail, then one may simply be forced 

to conclude that the conventional Monte Carlo method is not applicable. 
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An integral which has either an unbounded integrand or an infinite 

integrating region (or both) evidently presents a special problem, usually 

the best procedure is to try to find a transformation of variables [cf. (3.30)] 

which is such that the transformed integrand (i.e., the old integrand times 

the Jacobian of the transformation) is bounded, and the transformed inte- 

grating region is finite. Then the methods outlined flbove may be applied. 

If the given integral truly exists, then many such transformations to a 

bounded integrand and a finite integrating region exist, but whether or not 

one of these can actually be found is another matter. In certain cases 

where the only difficulty is an infinite integrating region, we can often 

just use the more general Monte Carlo formula (3.19). For example, suppose 

we have to evaluate the one-dimensional integral 

00 

I « /f(x)dx (3.33a) 
0 

where f(x) can be written in the form 

f(x) =- h(x)xnexp(-ax2) (3.33b) 

with n a non-negative integer, a>9, and h(x) bounded for 0<x<00. Using 

the density function P(x;n,a) defined in (2.51), we may evidently write 

I as 

CO 

I » A'l(n,a)Jh(x)P(x;n,a)dx (3.34) 
c 

Since, as discussed in detail in Sec. 2-9, we know how to generate random 
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numbers x. in (K««» according to the density function P(x;n,a), then we 

may evidently proceed according to (3.19), wherein the volume of the Inte- 

grating region never enters explicitly. Note that if we use the straight 

inversion method to generate random points x. according to P(x;n,a)—i.e., 

if we proceed by actually inverting 

r = F(x;n,a) (3.35a) 

for a given r^r. where F(x;n,a) is the distribution function in (2.52)— 

then we are in effect making a change of variable x*r: For, by (3.35a) 

dr = F,(x;n,a)dx * P(xr:i,a)dx (3.35b) 

so that (3.34) can be transformed to 

1 
I = A"i(n,a)/h(x)dr (3.36) 

o 

In (3.36) x is now understood to be the function of r obtained by inverting 

(3.35a). As discussed in connection with (2.52), this inversion must be 

done numerically in all cases except for n*!. 

3-4. Combining Results of Monte Carlo Calculations 

It frequently happens that we are Interested in the sum of two Integrals, 

each of vlilch has been computed Independently in separate Monte Carlo calcula- 

tions. Consider, for example, the two integrals 

lk  aJf
k(xk)d5?k.  k - 1 and 2 (3.37) 
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where we allow even for the. possibility that ßi and Ü2  may be of different 

dimensionalities. If two independent Monte Carlo calculations have yielded 

the results [cf. (3.21)] 

Ik =: Ik ± Ak>  k - 1 and 2 

then, as we shall show below, we may assert that 

Ii + I2 - (Ii + I2) ±  /A? + ÄF 

(3.38) 

(3.39) 

Note in particular that, although the estimate of the sum is the sum of the 

estimates, the uncertainty in the sum is always somewhat less than the sum of 

the uncertainties. 

To show that (3.39) is true we aRöuae that, for k«l and 2, I, and A. 

have been calculated in the usual Monte Carlo way [cf. (3.21)] using a 

"sufficiently large" number of uniformly distributed random points in fl, . 

Then f. is in fact a particular element of a set of random numbers {l, .} 

which has a mean I, and a variance Ar. Now clearly Ii+ I2 is a particular 

element of a set of random numbers {lpi+ I2 i^ wllic^ i8 formed by adding 

pairs of independently drawn random numbers from the two sets {I- .} and 

{I. .}, The question is, what are the mean and variance of the set 
z, 1 

{I- +!,.}? The answer is provided by a well-known theorem of statistics, 

proved in Appendix C, which says that the mean and variance of the sum of 

two statistically independent sets of random numbers are equal respec- 

tively to the sums of the means and variances of the two sets. Thus, the 

set of random numbers {\^+  I2 ^ has mean 1^ I2 and variance A?+ Al. 
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These facts evidently enable us to make the statement (3.39). 

Another frequently encountered situation is the following: We are 

presented with an integral I of the form 

I - /f(*)d3? (3.40a) 
Q 

where f(5t) is the sum 

ftf) « fitf) + f2(x) (3.40b) 

It is desired to calculate by Monte Carlo methods not only the integral t 

but also the two integrals 

I, = /f, (x)d*,  k - 1 and 2 (3.41) 

which evidently constitute I according to 

I » Ii + I2 (3.42) 

Letting {£.} denote the set of random points distributed uniformly 

over ß [i.e., according to the density function P^(5t)], then the set of 

random numbers ffk0t.)} 
has mean % and variance a^ given by 

\ • <fk!Pn> 

and 

< • <^> - <fk!PnV 

If we use N random points xi,^,.-.,^ from {5^} to compute the N-term 
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average ^n^n)« [cf* (3«6)]t then if N is sufficiently large we can put 

\*  l^lkV^N1?!)'  ^ land 2 (3.43) 

Now, if we use one set of N points from {x.} to calculate V^i:po)w 

and a different set of N points to calculate (fz'^r^^,  then these two 

estimates will be statistically independent; hence, we may invoke (3.39) 

and obtain for I the result 

i~-w(<^x*<^u\ ±^¥) (3.44) 

Suppose, however, that we calculate ^i!P^N 
and ^f2:P^N in ^'^ 

using the same set of N points from {x.}. This would obviously be desirable 

from the standpoint of calculating only Xi and I2, since it would require 

generating only N instead of 2N random points !?.. Of course, if this were 

done then the random numbers {fi:P^)N 
and ^2:P

Q\ 
woul(i 5^- be statisti" 

cally independent, and we could therefore not assert the result (3.44) for 

I. However, as we calculate (fi:PQ^M and ^f2:Pr)N "in parallel" (i.e., 

using the same set of N random points), it would clearly require very little 

effort to also calculate, using (3.40b), the quantity ^f:PJ) . Then instead 

of (3.44) we could assert for I thtf usual Monte Carlo result 

nai(<^N*y (3.45) 

where 

*2-<^o>-<*:Po) lß> 

is the variance of the set (fCx^)} E {f 1 (? )+f 2(3? )}. We note 
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that, because of (3.40b), the quantity (f:PJ) in (3.45) could also be 

written as the sum of {fi:P^) and ^f2:P^)N, just as in (3.44).  In other 

words, the estimate 

1= |fl|l(f1:Pß>N+<f2:Pß>N] 

is valid regardless of whether ^fi:P0)N and ^f2:pQ)N are computed using the 

same set or different sets of N random points from {x.}. However, the 

uncertainties in these estimates are not in general the same, because a2 

in (3.45) is not generally equal to Qi+c^ in (3.44). 

In summary, then, we may calculate Ii,l2 and I in either of two ways: 

One way is to first make separate Monte Carlo calculations of Ii and I2 

[cf.(3.43)] using two independent sets of N random points, and then assert 

the result (3.44) for I. An alternate way is to make three simultaneous 

"parallel" Monte Carlo calculations of Ii, I2  and I [cf. (3.43) and (3.45)] 

using a single set of N random points.  In practice, the second method is 

usually more efficient. The fact that it requires generating only half 

as many points as the first method usually more than compensates for any 

excess of a over vxr 1+^2»furthermore, a sometimes turns out to be considerably 

less than /jf+Öf. 

The relation of a to Ox  and 02 is interesting, and deserves further 

discussion. Of course, in any actual "parallel" Monte Carlo calculation, 

we would simply approximate CTi, 02  and a by 

ak *  <fk:I,n>N " <fk:Pn>N-  k " 1 and 2 
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and let these values speak for themselves. However, It is Instructive to 

examine under what conditions and by how much a2 will be greater than or 

less than Qi+ci, In Appendix D we prove that [cf. (D.5)] 

a2 = a? + ai + 2cov(fi,f2:Pfi) (3.46) 

where the covariance of fi(x) and f2(x) with respect to PQ(X) is defined by 

covCfi.f,:^) i {f1t2:Vü) -  <f1:Pn><f2:Pß> (3.47) 

Evidently, then, a2 will be greater or less than ai+G2 according to whether 

cov(fi,f2:PQ) is positive or negative. We also show in Appendix D that 

cov(fi,f2:PQ) is bounded according to [cf. (D.9)] 

-crlö2 ^ cov(fi,f2:Pfi) ^ -^lOz (3.48) 

Inserting this into (3.46) yields the inequality 

|ai - a2| ^ a <£ ci! + a2 (3.49) 

We may interpret these results as follows:  If the functions fi(x) 

and f2(x) are such that cov(fi,f2:PQ) assumes its maximum possible value 

of +a]ö2, then fi(x) and f2(x) are said to be "maximally positively cor- 

related", and the rms deviation a of the set {fi(x.) + fsO^,)) is equal 

to 01+02. If the functions f10i)  and fa (5c) are such that cov(f j ,f 2:Po)-0, 
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then the rms deviation a of the set {f i (x.Hf 2 (x.)} is equal to Vof+uf; 

this is the same as one would get by forming the sums of independently 

chosen numbers from the two sets {fi(x.)} and {f20f.)}. Finally, if the 

functions fi(x) and fa(5?) are such that cov(f 1 ,f2:?^) assumes its minimum 

possible value of -OiOz,  then fi(x) and faCx) are said to be "maximally 

negatively correlated", and the rms deviation a of the set (f 1 (x.)+faCx*.)} 

is equal to jai-Gal. 

In the present instance, it is clearly advantageous for fi(x) and f2(x) 

to be negatively correlated; for then the uncertainty in the estimate of I 

obtained using a single set of N points via (3.45) would actually be less 

than the uncertainty obtained using two sets of N points via (3,44). Gener- 

ally speaking, fi(x) and faOc) will be negatively correlated if the minima 

of fi(x) tend to occur in regions where faOc) has its maxima, and vice-versa. 

3-5. Monte Carlo versus Other Nume' Leal Integration Methods 

At this point it seems appropriate to make a few brief comments on the 

relative advantages and disadvantages of the Monte Carlo method as compared 

with the more conventional numerical integration methods. 

If the integral is one-dimensional and the integrand is fairly smuoth, 

then the standard quadrature methods are far superior to Monte Carlo. For 

example, the relatively crude Trapezoid Rule will have in this case an 

associated uncertainty which decreases like 1/N2 as the iiumber N of (evenly 

spaced) sampling points increases; by contrast, the uncertainty associated 
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with the Monte Carlo method decreases only like l/N1^2 as the number N of 

(random) sampling points increases. However, for integrals of high dimen- 

sionality the situation can be otherwise. For example, in d dimensions the 

2/d 
uncertainty inherent in the Trapezoid Rule decreases only as 1/N   whereas 

the uncertainty in the Monte Carlo method remains proportional to 1/N1^. 

Moreover the extensions rf the conventional methods to higher dimensions 

are usually quite complicated, whereas the Monte Carlo procedure is rather 

insensitive to the dimensionality of the integral (particularly if the 

integration region ft is box-like).  It should also be pointed out that the 

conventional methods and their attendant estimates of the uncertainty usually 

require the integrand to be a fairly "smooth" function, whereas the Monte 

Carlo method easily accommodates finite step discontinuities of the type fre- 

quently occurring in integrals of physical interest. In light of these 

considerations, it is seen that the Monte Carlo method can be a very sensible 

choice for complicated, multi-dimensional integrals. A rough rule-of-thumb 

is that, for Integrals which cannot be conveniently reduced analytically 

below a dimensionality of 4 or 5, the Monte Carlo method should be given 

very serious consideration. 

A particularly attractive feature about the Monte Carlo method is its 

operational simplicity, and the relative ease with which it produces not 

only the estimate of the integral but also the uncertainty in this estimate. 

For this reason, it sometimes makes good sense to use the Monte Carlo method 

even when it is not the most "efficient" method (in the sense of producing 

an answer of given accuracy using a minimum of computer time), for one can 
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often obtain a sufficiently accurate answer at an acceptable computer cost 

using Monte Carlo much faster than one can implement a more efficient but 

more complicated standard numerical method. And even if it is desired to 

have the normally greater accuracy of the conventional methods when the 

dimensionality is less than 5, a simple Monte Carlo calculation can often 

provide a reassuring independent check against gross errors. 

Finally it should be noted that, from the standpoint of the computer, 

the Monte Carlo method makes very minimal demands upon storage capacity and 

input/output devices. In particular, one does not have to store lots of 

points sc and/or their associated f-values [see Fig. 9]. Thus, when executing 

a Monte Carlo program, the computer will normally be "compute bound", or 

limited only by the speed with which it can perform standard arithmetical and 

logical operations. From a strictly financial point of view (which may well 

be the most sensible measure of "efficiency") one should therefore pay at- 

tention to whether one's computer charges are calculated on the basis of 

"cpu time" (i.e., the time actually spent by the central processing unit 

in carrying out the required arithmetical and logical operations), or on 

the basis of "core time" (i.e., the cpu time weighted by the memory storage 

used a^d the number of times input/output devices are accessed). For a 

typical compute-bound Monte Carlo calculation, core-time charges can range 

from 2/3 to only 1/10 of the cpu*time charges. Until recently roost 

computer centers charged on the basis of cpu time; however, for the newer 

computers which run in a time-sharing mode, core time has been shown to 

provide a more realistic and equitable basis for charging users. As a 
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result, most large computer centers now charge on the basis of core time, a 

fact which makes the Monte Carlo method today even iu?re attractive. 

Despite the foregoing advantages of the Monte Carlo method in certain 

circumstances, it nevertheless frequently happens that one plays the Monte 

Carlo game through according to the rules, but finds that one's answer has 

an uncertainty which is dimply too large. Since increasing N (and therefore 

the computer running tinui, and therefore the cost) by a factor of k decreases 

the uncertainty by a factor of only l//k, one is tempted in such cases to 

discard the Monte Carlo method as unsuitable. While this may indeed be the 

appropriate course of action, one should not take this step without giving 

some consideration to the variance reducing techniques which we shall out- 

line in Chapter 4. Essentially, these techniques try to decrease the 

numerator of the uncertainty in (3.21) without significantly increasing the 

required computer time. It is probably fair to say that the relatively 

recent recognition and use of these variance reducing techniques has, more 

ti^an anything else, served to elevate Monte Carlo to the level of a "respect- 

able colleague" of the conventional numerical quadrature methods. 
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Chapter 4 

VARIANCE REDUCING TECHNIQUES 

A-l. General Considerations 

We have seen that the straightforward Monte Carlo method of estimating 

the Integral 

I = /f(x)dx (4.1) 

consists of first picking N points x-, IL,...,!^ from the set of random 

points {x.} distributed uniformly over Q—i.e., according to the density 

function PQOO in (3.4)—and then putting 

I * I ± A (4.2) 

where the estimate I is 

I = |Q|i I  f(?) 
w i«l  1 

(4.3) 

and the uncertainty A is 

A« |n| Sgg (4.4) 

In (4.4), var(f:L^) is just the variance a2 of the set of random numbers 

{f(xi)}[see (3.16)], 

var(f:P^ =~ <f2^) ' (f'^Y (4.5) 
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which In actual computations Is always approximated according to [see 

(3.17)] 

(f:Pn) = \    U^)   - (1 U&JY (4.6) 

It is clear from (4.4) that the uncertainty A can in principle be 

made as small as desired by taking N large enough. However, since the 

time required to perform the calculations is roughly proportional to N, 

then in practice the size of N is limited by the amount of computer time 

available; for example, in order to halve the Monte Carlo uncertainty 

obtained in a one hour computer run, we would have to perform a four hour 

computer run. Clearly, then, beyond a certain point it is simply not 

H     feasible to decrease the uncertainty by increasing N, It would seem that 

f     the only alternative to increasing N would be to somehow modify f and/or 

i     PQ in such a way that the value of I is essentially left unchanged, while 

6     the quantity var(f:P0)gets replaced by something smaller. Several general 

procedures have been devised for accomplishing this, and in the present 

chapter we shall give a brief discussion of four of these so-called "variance 

reducing" techniques. Whether or not any of these techniques can be prof- 

itably utilized in any given instance will depend very strongly upon the 

specific form of the integrand f(x) and the integrating region ft, as well 

as upon the resourcefulness of the person doing the calculation. For this 

reason we shall not be able to develop specific recipes for blindly applying 

these variance reducing techniques; all we can do is outline their basic 

strategies. 
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To get a general Idea of just what is involved in "reducing the variance", 

it may be helpful to recall the discussion of Section 3-2. There we 

denoted by P(y) the density function of the set of random numbers {y } = J(x.)] 

In principle, the function P(y) is uniquely determined by the two functions 

f(x) and PQ® fsee ^8* 8], but in practice it is never possible to calculate 

P(y) analytically. Nevertheless, it is precisely the "center of gravity" 

of the curve P(y)-versus-y, namely ^yiP/»^:?^ which when multiplied by |fi| 

gives the sought for value of the integral I. Now, essentially what we do 

in a Monte Carlo calculation is to approximate the curve P(y)-veräas-y by 

a frequency histogram of N randomly chosen numbers from the set {y.}={f'Ic.)}. 

Provided N is sufficiently large, the center /y:Pi =^f :PJ) of the frequency 

histogram will approximate the center (y:P)= ^f:P0/ of the P(y) curve to 

within a ± uncertainty equal to the width /var(y:P)=/var(f:P0) of the P(y) 

carve divided by v^.  In an actual calculation, of course, we also approximate 

the width of the P(y) curve by the width of the frequency histogram, which is 

given by the square root of the quantity on the right side of (4.6).  It 

is sometimes helpful to actually plot a frequency histogram of the y.=f(x.) 

values in the course of carrying out a Monte Carlo calculation , since such a 

histogram graphically illustrates just what one is up against in obtaining 

an accurate Monte Carlo estimate of the integral at hand: The broader 

Such a histogram should be built up continuously as each new y.=f(x.) value 

is obtained, rather than all at once at the end of the calculation. The idea 

is to avoid having to store all the y-values in computer memory. 
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I 
this frequency histogram, the more sensitive its center will be to random 

fluctuations arising from the finiteness of the number N of  y.-values 

sampled, and hence the more uncertainty will be associated with the funda- 

mental approximation ^y:?) ~ ^ysP)N« 

Of course, a frequency histogram of the f(5^)-values should not be 

confused with a plot of f(x)-versus-x. Indeed, ths shapes of these two 

curves are sort of inversely related to each other: If f(x) is relatively 

constant over fl, then the frequency histogram of the f(xJ-values (or 

equivalently, the curve P(y)-versus-y) will consist primarily of a single, 

narrow peak, .Implying that var(f :PQ) will be relatively small. On the other 

hand, if f(2) is peaked and consequently assumes a wide range of values in 

ß, then the frequency histogram of the fCx^)-values (or equivalently, the 

curve P(y)-versus-y) will be broadly spread out, implying that var(f:?„) 

will be relatively large. 

Taking all these things into consideration, it is clear that any variance 

reducing technique must aim at modifying things in such a way that the value 

of the integral is unchanged, but the integrand is rendered flatter or more 

nearly constant over the integrating region. The consequent narrowing and 

sharpening of the density function P(y) of the set of integrand values {y.} 

will make its true center easier to locate by a finite sampling procedure, 

thereby reducing the Monte Carlo uncertainty A.  Indeed, if we could some- 

how arrange to wind up with ar integrand which is perfectly constant, then 

the density function of the integrand values would be a single spike at 

that constant value with zero width, and our Monte Carlo estimate would be 
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exact. Of course, In such a case the Integral could be performed analytically, 

and Monte Carlo would not be needed. But the Important thing here is that 

the closer we can get to the ideal situation of a constant integrand the 

more accurate our Monte Carlo calculation is going to be.  This, in es- 

sence > is the guiding philosophy of all variance reducing techniques. 

In Sections 4-2 through 4-5 we shall sketch four different strategies 

for reducing the variance in a Monte Carlo integration. These strategies 

are called control variates, antithetic variates, stratified sampling, 

and importance sampling. We shall see that, despite these somewhat esoteric 

names, the underlying principle of each method is really quite straightforward. 

This writer's practical experience has been mainly with the last technique 

(importance sampling), and in Section 4-6 we shall describe a crude but 

often effective procedure for applying that technique in a rather routine 

way. 

4-2. Control Variates 

Suppose we can find a  function f o(x) whose integral over Q is  known 

exactly: 

I0=/fc.«)dx (4.7) 
Ü 

Then the given integral I in (4.1) can be written 

I - I0 4- / [f(x)-f0ff)]dx (4.8) 
Q 
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Now, i£fo(x) has a sufficiently strong correlation with f(x), so that 

foÖ) tends to be large where f($) is large and small where fOO is 

small, then the function [f (x)-f o#)] will be more nearly constant over Ü 

than f(x) alone is. In such a circumstance, the integral I can evi- 

dently be determined more accurately through (4.8) by performing a Monte 

Carlo integration of [f (x)-f o(5t)] instead of by Monte Carlo integrating 

f(x) itself. This strategy is known as the "control variates" method: 

essentially, the fluctuations in the variate f(x), whose mean over 

ft  is not known, are to some extent "controlled" by the fluctuations in 

the variate fo(x), whose mean over ft is known. 

More quantitatively, the ratio of the uncertainty A in calculating 

with (4.8) to the uncertainty A in calculating with (4.1), assuming the 

same number of random points in Ü    are used, is evidently 

N var(f-fo:P0) 
Now, according to (D.6) 

var(f-fo:P^) - var^P^) + var(fo:Pn) - 2cov(f ,f o :PQ) 

where the covariance of two functions with respect to a given set of 

random points is defined and discussed in Appendix D. Hence, we will 

evidently have A <A provided 

cov(f,fo'.PQ) > |var(fo:PQ) (4.10) 

This last inequality tells us precisely how strong the correlation between 
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f o(5c) and fOt) must be in order for (4,8) to yield a more accurate 

Monte Carlo estimate of I than (4.1). Of course, in practice it is 

never possible to ascertain beforehand whether or not a chosen function 

fo(x) satisfies this requirement, because cov(f,fo:PQ) is defined in terms 

of integrals which are generally more complicated than I itself [see (D.4)]. 

Therefore, in an actual calculation one would have to be content with finding 

an integrable function fo(x) whose maxima and minima roughly correspond 

to those of fiT),    A short test Monte Carlo run could then resolve the 

question of whether or not var(f~fo:pQ) is significantly less than var(f:P0) 

simply by directly estimating these two quantities in the usual way [see 

(4.6)]. 

We see, then, that the difficulty in applying the control variates 

method lies not in determining whether (4.10) holds for a given function 

fo(x), but rather in discovering a suitable fo(x) in the first place. On 

the one hand, fo(x) must be simple enough that its integral over Ü  can be 

calculated analytically; on the other hand, fo(x) must be intricate enough 

to follow the major ups and downs of the presumably complicated function 

f(x). Therefore, the practical limitations on the control variates method 

are essentially those imposed by one's limited knowledge of the detailed 

"V-hape" of the given function f(x) over ft, as well as one^s limited ability 

to find or construct exactly integrable functions fo(x) of a similar shape. 

4-3. Antithetic Variates 

Suppose we can find a function fo(x) whose integral over Ü  is known 

to be equal to the integral of the given function f(x) over Ü  (even 
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though, of course, the numerical value of that common Integral Is unknown): 

Jf (x)dx « JfOOd* - I (4.11) 
a 0 a 

Then the given integral I in (4.1) can be written 

I - ji[f(x)+fo(x)](& (4.12) 

sr 

Now, if_ fo(x) has a sufficiently strong anti-correlation with f(x), so that 

fo(x) tends to be large where f(x) is small and small where f(x) is large, 

then the function r[f(5)+fo(x)] will be more nearly constant over £1  than 

f (x) is.  In such a circumstance, the integral I can evidently be determined 

more accurately through (4,12) by performing a Monte Carlo integration of 

^[f(x)+fo(x)l instead of by Monte Carlo integrating f(x) itself. This strategy 

is known as the "antithetic variates" method: essentially, the fluctuations 

in the variate f(x) tend to be cancelled by the opposing fluctuations in 

the variate fo(x)» with the result that the fluctuations in the variate 

r[f(x)+fo$)] are smaller than either. 

More quantitatively, the ratio of the uncertaintly A in calculating 

with (4.12) to the uncertainty A in calculating with (4.1), assuming the 

same number of random points in SI  are used, is evidently 

A   I  var(f:Pfi) 

Now, according to (D.6) 
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var(|[f+fo]:Pfi) = |var(fiP^) + |var(fo:Pß) + icov(f,fo:Pfi) 

=var(f:Pß) - |var(f:PQ) + ivar(fo:Pfi) 

+|cov(f,fo:Pfp 

Hence, we will evidently have A <A provided 

cov(f,fo:Pfi) < |var(f:PQ) - |var(fo:P^) (4.14) 

This last inequality tells us precisely how strong the anticorrelation 

between fo(x) and f(5f) must be in order for (4.12) to yield a more accurate 

Monte Carlo estimate of I than (4.1). Of course, in practice, it is never 

possible to ascertain beforehand whether or not a chosen function fo(x) 

satisfies this requirement, because cov(f,fo:PQ) is defined in terms of 

integrals which are generally more complicated than I itself. Therefore, 

in an actual calculation one would have to ne content with finding some 

function fo(x) vhose integral over C is known to equal I and whose maxima 

and minima roughly correspond to the respective minima and maxima of f(x). 

A short test Monte Carlo run could then resolve the question of whether or 

not var(s[f+fo]:PQ) is significantly less than var(f:P0) simply by di- 

rectly estimating these two quantities in the usual way [see (4.6)]. 

Clearly, the difficulty in applying the antithetic variates method 

lies in finding a suitable function fo(x), just as in the control variates 

method. On the surface it might seem that it would be exceedingly dif- 

ficult to find a function which, on the one hand, has the same integral 
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over Ü  as the given function f(x), while on the other hand is strongly 

anticorrelated with f(x). Usually the most feasible way to proceed is 

to define fo(x) in terms of f(x) itself. As a simple illustration of how 

this can be done, consider the Monte Carlo evaluation of the one-dimensional 

integral 

b 
I « /f(x)dx (4.15a) 

a 

Suppose we define fo(x) by 

fo(x) = f(a+b-x) (4.15b) 

|     That this function fo(x) satisfies the fundamental requirement that its 

|     integral from a to b equals I is easily proved by changing integration 
k 

i: 

variables according to x+x^a+b-x. Thus we have as in (4.12) 

b . b1 
I « / iff(x) + fo(x)]dx = /j[f(x) + f(a+b-x)]dx        (4.15c) 

a a 

Now, ii it happens that f(x) is monotonically increasing (decreasing) in 

a<x<b, then fo(x) will be monotonically decreasing (increasing) in a<x<b; 

as a consequence, the integrand in (4.15c) will be more nearly constant over 

a<x<b than f(x), and will thus have a smaller variance.  Indeed, if f(x) 

were the simple linear function Ax+B, then the integrand in (4.15c) would 

be a ror-tant, and the variance would be zero. 

In less trivial multidimensional applications, one can try to con- 

struct a suitable function fo(x) in terms of f(x) in an analogous way. 
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Specifically, one puts 

fo(x) E t&y (4.16a) 

where 5W is a transformation which satisfies the two conditions 

• 3W maps ß onto itself 

9x • the Jacobian ■*:=, a 1 

(4.16b) 

These two conditions insure that the Integral of fo(x) over fi is equal to 

the integral of f(x) over fi, since 

jfo(x)die= ff(r)d3t- /f(r>p 
ü h a      m' 

dx» = Jf^^dx1 

• Ü 

The remaining details of the transformation x->xf [that is, all properties 

not specified by (4.16b)] are then chosc/a in such a way that the transforma- 

tion tends to carry points for which f(x) is large into points for which 

fOf) is small, and vice-versa; this will result in fo(x) in (4.16a) being 

"anticorrelated" with f(x). Clearly, one needs to know a good deal about 

the behavior of f(x) in ß in order to devise such a transformation which 

will anticorrelate fo(x) and f(x) to a sufficient degree that var(r(fo+f):PQ) 

will be significantly less than var(f:P^). 

4-4. Stratified Sampling 

Let the given integrating region Q be partitioned into n subregions 

ft1,^2♦....ft . Then the integral I in (4.1) can be written 
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n 

1-13 
(4.17) I 

where I is the integral of f(x) over the subregion S2. 

I = / f(30d!f,  j-1,2 i (4.18) 

Suppose now that we Monte Carlo integrate each integral I. separately; that 

is, we pick N. random points xi ,£2»...,xIL from the uniform distribution 

inside Ü ,  and we put [cf. (4.2)-(4.4)] 

I.  - li+'i 
(4.19) 

where 

j       '  j 'j i=l 
(4.20) 

and 

"i ■ 1°^ 
/var(f:P0 ) 
 X (4.21) 

Since these Monte Carlo estimates of the n I. integrals are statistically 

independent of each other, then we can obtain a Monte Carlo estimate of 

the sum of the I integrals, namely I, by applying the prescription in 

equations (3.37)-(3.39).  Specifically, we may assert that the integral I 

in (4.1) is given approximately by the estimate 

I = Ii + I2 +... + I, n 
(4.22a) 
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and further that the ± Gaussian uncertainty associated with this estimate is 

A* « /Aj + Ai +...+ A2' (4.22b) n 

The foregoing method of estimating the integral I is called the 

"stratified sampling" method (for reasons to become apparent later). It 

is obviously a legitimate way of proceeding, but the extra effort involved 

is clearly pointless unless the uncertainty A in (4.22b) is significantly 

less than the uncertainty A in (4.4), given that the total number of points 

used in the two procedures are the same. The question of interest, then, 

is as follows: Given that 

n 
J] N = N (4.23) 

under what conditions  (If any) will 

n vartftPjj ) 

^-IISJ2— 1 (4-24) 
j-l    J j 

be significantly less than 

var(f:P0) 

A2 = W2—H1 (4-25) 

In addressing this question let us begin by considering a specific 

situation which, although somewhat contrived, would obviously be handled 

more efficiently by the stratified sampling method than by the ordinary 

sampling method. Thus, suppose J:(x) consists of a number of perfectly flat 
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"plateaus" over ß,  in that 

fCSfj) « Cj      for   ^c^       (j-l.Z,...^) 

where ^1,^2»...»^ are a particular set of n non-overlapping subregions 

whose union is Ü.    In such a situation we would evidently have var(f:P0 ) ■ 0 

for each j, so that the uncertainty A in (4.24) associated with a stratified 

sampling over the corresponding regions ßi,...,fi would vanish. On the other 

hand» the uncertainty A in (4.25) associated with the regular method would 

not vanish unless f(x) were constant everywhere inside fi—i.e., unless the 

constants c. were all equal to each other. 

To illustrate this situation more concretely,, the reader can easily 

verify that an ordinary N-point Monte Carlo calculation of the integral 

over Ü  * (0,1) of the step function 

I f(x) 
I 
i. 
1 

1, for 0^x^1/2 

2, for l/2<xa 

will have an associated uncertainty of 

/var(f:P0)   ,/9 
A Hl|  —   = — 

However, if we partition the integrating region Q - (0,1) into the two 

subregions Qi=(0,l/2) and ^2^(1/2,1), then since f(x) is constant inside 

each subregion we will have var(f:P^ )-var(f:P^)=0; therefore, the 

uncertainty A associated with a stratified sampling procedure over these 
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tvro subregions will vanish. 

Addressing the problem more generally, we show in Appendix E that, 

for any given function f(x) and any partitioning of the given region Ü 

into subregions ßi.Paf.fß , we have [cf. (E.4)] 

var(f:P0) = Ja.varCf :P0 ) + £ Jä.a. (<f :PQ> - (f :P0) )2   (4.26a) 

where 

j 
j 

j   j<k 
j^k^ 

j 

a. E l^l/lQl (4.26b) 

The two-term structure of (4.26a) reveals that the variance of f(x) over 

Ü  can be regarded as coming from two sources: (i) the variations in f(x) 

within each of the various subregions [the first term in (4.26a)]; and 

(ii) the variations in f(x) among the various subregions [the second term 

in (4.26a)]. Now, it is clear from equations (4.25) and (4.24) that, 

whereas both of these sources of variation contribute to A, only the first 

source contributes to A . Therefore, if we can devise a partitioning 

of Ü  which minimizes (i)—or equivalently maximizes (ii)—then we may 

expect that A will be significantly less than A. This in essence is 

the guiding philosophy of the stratified sampling technique:  If the 

integrand f(x) has several fairly level plateaus or "strata", then 

independent samplings over the regions ^1,^2,...,\1 under each strata 

will result in a more accurate estimate of the integral than a sampling 

over the entire region Ü  which ignores the strata. 
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Apart from the problem of determining an effective partitioning 

scheme for the region 9 — and this is really the key problem In applying 

the stratified sampling procedure — we also have the problem of deciding 

how to apportion the N sampling points among the various subreglons Ü,. 

One simple and Intuitively plausible way of doing this would be to make 

N proportional to the size of ß.. Thus, we would put 

Vw^l-^j (4.27a) 

This of course Is roughly how the points would apportion themselves In an 

ordinary "unstratlfled" sampling procedure. If we Insert (4.27a) into the 

expression for A In (4.24) and then divide by the expression for A in 

(4.25), we find that this way of apportioning the points produces the 

following ratio of A to A: 

*  iLftvarCf^ ) 

(4.27b) 
var(f:Pn) 

Now, since the second term in (4.26a) cannot be negative, we see that the 

numerator in (4.27b) cannot exceed the denominator [cf. (E.5)]. Thus we 

conclude that, if the numbers N are chosen according to the simple pre- 

scription (4.27a), then regardless of how astutelv the partitioning is 

chosen we shall have A ^A. However, it is also clear from (4.26a) that 

the more care one takes to exploit any "plateau-like" behavior of f(x) 

* 
in choosing the partitioning, the smaller the ratio A /A is going to be. 

Actually, the apportioning of points to each subregion strictly 

according to the size of the subregion is not the optimum procedure, 
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even though as we have seen It can never result In making A >A . In 

Appendix F we show that the best procedure is to oake N proportional to 

the size of Q. times the rms variation of f(x) over ü.   [cf. (F.9)]: 

N4 « K|Q.|tVar(f:P0 ) (4.28a) 
j    J       "J 

Here the constant K is to be determined by the requirement ^.N -N. Of 

course, we would normally not have any a priori knowledge of the quanti- 

ties var(f:P0 ). In practice, therefore, a sensible procedure to follow 

would be to apportion the points according to (4.27a) in a short preliminary 

calculation, and then adjust the apportionnent more along the lines of 

(4.28a) on the basis of the estimates for var(f:P0 ) obtained in the 

j 
preliminary calculation. By combining (4.28a) with (4.24) and (4.25), it 

is a simple matter to show that this optimum apportionment of sampling 

points leads to [cf. (F.10)] 

I a fQ7(f:PQ ) 

♦w<f:V 
(4.28b) 

instead of (4.27b). 

Again, we should emphasize that the major problem presented by the 

stratified sampling method is to discover a sensible way of partitioning 

Ü  into subregions ^i,^,.-« • Generally speaking, the method is worth- 

while only if the "curve" f(x)-versus-x exhibits a quasi-plattaued 

appearance. One must then be able to associate with each plateau a 

subregion Q    whose shape is sufficiently simple that:  (i) its volume 
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|ß.| can be calculated exactly, and (11) random points can easily be 

generated uniformly inside Ü,. As with the control variates and the 

antithetic variates methods, a successful application of the stratified 

sampling method clearly requires a fairly detailed knowledge of the be- 

havior of f(x) in Q. 

4-5. Importance Sampling (Theory) 

Let P(x) by any probability density function which is normalized 

on, and non-zero in, the given integrating region Ü: 

/P(x)dx 
Ü 

P(x) > 0  for all xeß 

(4.29a) 

(4.29b) 

The latter property allows us to multiply and divide the integrand in 

(4.1) by P(x) to obtain the following equivalent expression for the 

integral I: 

I « J[f(30/P(x)]Pat)d? 
ft 

With (3.3) we can write this as 

(4.30) 

I = <f/r:P) (4.31) 

which says that the integral (4.1) can be regarded as the average of 

f(x)/P0f), taken with respect to the set of random points {x.} distributed 

according to the density function P(x). From a Monte Carlo point of view 
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this implies that if 3?i ,X2,... ,xl. are N random points distributed 

according to the density function P(x), then we can put 

where 

I = I* ± A* (4.32) 

*      i N 

I = i Vf(!?.)/?(?,) (4.33) 
wi=l 

and 

A* = ^SUM) (4.34) 

We remark again that, except for the requirements (^.29), the form 

of the density function P(x) is quite arbitrary. One possible choice 

for P(x) Is of course the uniform density function PQ(X) in (3.4). For 

this choice we have f(x)/P(5!)-|fi|f (x) everywhere inside Q, so that (4.31) 

reduces to (3.5), and (4.32)-(4.34) reduce to (4.2)-(4.4), respectively. 

These latter equations have formed the basis for most of our discussion 

of the Monte Carlo method of evaluating integrals. However, the foregoing 

observations suggest that we need not be inextricably wedded to the uni- 

form distribution. As we shall see below, whereas the average I in (4.33) 

* 
is essentially independent of the form of P(x), the uncertainty A in 

(4.34) depends rather strongly on the form of P(x). Therefore, if the 

uncertainty which results from the usual procedure of taking P(x)=P^(x) 

[i.e., A in (4.4)] turns out to be unacceptab^y large, it might be possible 

to use some other form for P(x) and thereby reduce the uncertainty. 

#»* 
Let us first verify that I in (4.33) is, in the limit of large N, 

independent of the form of P(x). Essentially, this follows from the 
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observation that I    in  (4.33)  is by definition (f/P:P)  , and 

Iim<f/P:P)N - (f/P:?)- /[fa)/P(3?)]P(x)dx 
N^co 

so 

lim(f/P:P>M - Jf (x)d5? (4.35) 

To appreciate this important point in the context of an actual Monte 

Carlo process, let us Imagine changing from P(x) to some new density 

function P(3?). Suppose that, inside a given infinitesimal region dil  of Q9 

J,-* P(x) is k times as large as F(x): 

P^x) = kP(x),  for xedfi 

This implies that, in the limit of large N, we shall sample k times as 

many random points "x. inside dQ with P1 as with P. However, each such 

point sampled with Pf will contribute to the sum in (4,33) the amount 

f(5?)/P,(3c) = f(x)/[kP(*)l « |[f(^>/P(«)],  for xedQ 

which is precisely 1/k times the contribution of each point sampled inside 

dQ with P. Clearly, if we sample k times as many points inside d!^ while 

weighting the contribution of each such point by a factor 1/k, then the 

net contribution of df? to the sum in (4.33) will be unchanged. Applying 

this argument to every infinitesimal subregion dQ of 9.  [allowing the 

value of k to vary among these infinitesimal subregions in accordance 
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with the behavior of the functions P(x) and P'OO], we thus see that 

I in (4.33) is indeed insensitive to the form of P(x). 

Such is not the case, however, with A in (4.34). From a purely 

formal point of view we have 

var(f/P:P) - ((f/P)2:p) - (f/P:P)2 

= /[f(x)/P(30]2P(3?)d3? - [/[f(*)/P0O]P(x)d* 

Thus 

var(f/P:P) = /f2(x)PÄ,(x)dx - I2 (4.36) 
Q 

which shows that var(f/P:P), and hence A in (4.34), indeed depends upon 

the functional form of P(x). The question now is, how can we choose 

P(x) to minimize the uncertainty? 

Qualitatively, the answer to this question is rather obvious: To 

minimize the varianr3 of f(x)/P(x) with respect to any set      uom 

points, we must choose P(x) so as to make f(x)/P(x) as constant as possible, 

The more nearly constant f(x)/P(50 is, the smaller the variations will 

be among the individual terms in (4.33). and the less will be the un- 

certainty associated with their average I . 

More quantitatively, we prove in Appendix G that the density function 

P . (5?) which minimizes var(f/P:P), and hence A , is ' 

The results (4.37) and (4.38) were apparently first derived by H. Kahn 

(Ref. 9). 
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Pmin(J) ^ IfWl/flfCi^ld«' (4.37) 

In other words, the opuimum choice for P(x) is, apart from a normaliza- 

tion constant, just the function |f(x)|. Inserting this optimum density 

function Into (4.36), we find that the smallest possible value of A is 

[cf. (G.iab)] 

A*  = 2NVV/|ftf)|d^/|f(3?)|d$ (4.38) 
min     V &- T 

where Ü    is that portion of Ü in  which f(x) is everywhere positive, and 

Q" is that portion of Q in which f(3?) is everywhere negative. Evidently, 

we will have A   «0 if and only if f(5f) never changes sign insic* Ü,    For 
mln 

example, suppose f(x) were everywhere positive inside Ü,    Then we could 

take in accordance with (4.37) 

P(*) » f(lf)/Jf(r)dr - f(^)/I (4.39) 

so  that f(30/P(x) would simply be equal to the constant I everywhere in- 

f side Q.  In this case we would have var(f/P:P)jevar(I:P)=0 [this also 

|        fol1ovs by substituting (^,39^ Into the. right side of (4.3ft)], so that 

the uncertainty A would vanish. However, this nice state of affairs is 

somewhat spoiled by the following considerations:  Tf A in (4.4) is 

indeed to^ large, then ffx) evidently assumes a wide ranee of values 

inside ft.  In such a case, efficiency considerations would preclude 

generating random points x. according to the density function in (4.39) 

by the rejection method, and we would have to use the inversion method. 
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Now, in order to use the in"ersion method, we must be able to calculate 

analytically the "normalizing constant" 1/1 in (A.39); however, by hypothesis 

we cannot do this.  Similar considerations apply to the general case in 

(4.37), and we are forced to conclude that it is in practice not feasible 

to choose P(x)ÄP . (x) and so achieve the minimum uncertainty in (4.38). 

Nevertheless, the foregoing results do provide us with something to 

aim for in choosing an importance sampling density function P(x): We 

should try to choose P(x) s£ that it follows |f(x)|, proportionately, as 

closely as possible; that is, P(x) should tend to be large where |f(x)| is 

large and small where |f(x)| is small. This will result in f(x)/P(x) being 

a more constant or less varying function of x in Q than f(x) alone. As a 

consequence, var(f/P:P) will be smaller than var(f|fi|:Pn), and A in (4.34) 

will be smaller than A in (4.4). 

In so choosing P(x) to be large where |f(x)| is large, we will evidently 

be "biasing" our random point generating procedure in such a way that we 

sample more points x. in those regions of Q  where |f(x)| is relatively large. 

For this reason this method of reducing the variance is called "importance 

sampling": we sample most intensely in the "Important" regions of Q where 

f(3?) contributes most strongly to the integral. As previously noted, 

this sampling bias is compensatec for by dividing the value of f at each 

point x. by the value of P at the same point. The result is that we get 

the same average as in the uniform sampling case, but since the values 

f(x.)/P(?.) being averaged exhibit less variation than f(x.), the uncertainty 

is reduced. 
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In importance sampling, we therefore seek a density function P(x) which 

is such that (1) P(x) follows |fCfc)| as closely as possible, and (il) random 

points x. can be generated according to P(x) fairly easily. Ultimately of 

course, these two requirements are incompatible with each other: On the 

one hand P(x) must be intricate enough to follow the major variations of 

the presumably complicated function f(x), while on the other hand P(x) 

must be analytically simple enough so that an efficient generating algorithm 

can be devised. Clearly, one must in practice strive for a reasonable com- 

promise between these two requirements. Tcie potential success of the method 

in any particular instance will therefore hinge upon one's krowledge cf the 

behavior of the integrand, as well as upon one's ability to construct 

efficient algorithms for generating random numbers according to prescribed 

density functions. 

It should be noted that it is quite possible for an importance sampling 

procedure to make things worse instead of better: In making P(x) larger 

than PQ(X) in certain regions of fi, we must make P(x) smaller than PQ(X) in 

other regions of Üf  simply in order for P(x) to satisfy the normalizatica 

condition (4,29a).  in our zeal we may inadvertently make P(x) so suiall 

in some region that the quantity f (x)P'^(x) in (4.36) becomes correspondingly 

too large, and actually Increases the overall variance.  In practice, there- 

fore, one must determine a suitable function P(x) by a rather cautious and 

tentative trial-and-error process.  In the next section we shall describe 

in somewhat more detail one practical approach to this problem. 
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4-6.  Importance Sampling (Application) 

In this section we shall outline a specific procedure for applying 

the variance reducing technique described in the previous section. The 

procedure is rather crude, but it has the advantage of being relatively 

routine and easy to apply.  In the author's recent work (Ref. 4) this 

procedure has been able to decrease Monte Carl:» uncertainties by amounts 

equivalent to increasing the number of sampling points by anywhere from a 

factor of 2 to a factor of 200, depending upon the integral considered. 

To apply this importance sampling procedure to the calculation of an 

n-dimensional integral of the form 

I = /fOf)d* (4.40) 

it is corvenient to begin by recasting the integral as an integral over 

the n-dimensional unit cube. 

i  i     i 

I = Jdri/dr2- * •/drn h(rifr2,.••»
r
n) (4.41) 

o  o 

Such a recasting of the integral can always be carried out, and in fact 

it is essentially equivalent to "preparing" the integral for the Monte 

Carlo averaging process. To see this more clearly, let us consider the 

three-dimensional integral 

I = ///f(x,y,z)dxdydz (4.42) 

If one can represent the integrating region of (4.42) in the general 

form 
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Q  « {(xfy,z)|| ai^x^bi, a2(x)$y^b2(x), a3(x,y)$2<b3(x,y)} (4.43) 

then, provided the boundary functions a2,b2,a3,b3 are simple enough, one 

can apply the generalized inversion method to generate random points 

uniformly inside ti.    Thus, as described in connection with Eqs. (2.31)- 

(2.34), one firs: "conditions" the density function P^(x,y,z) in the 

form P(x)P(y|x)P(z|x,y) and calculates the corresponding one-variable 

distribution functions F(x), F(y|x), F(z|x,y). Then, where ri,r2,r3 are 

three random numbers from a uniform distribution in the unit interval, one 

inverts the equations 

ri - F(x) 

r2 = F(y|x) 

rs « F(z|x,y) 

(4.44) 

to obtain a random point (x,y,z) from the uniform distribution inside ß. 

[This procedure is particularly straightforward if fi is a box, in which 

case all the a. and b. are constants; see (2.35).) Using (4,44) to 

generate random points uniformly inside ^, one then proceeds to calculate 

I in (4.42) as |^| times the average of f(x,y,z) over these random 

points. However, suppose that instead of regarding (4.44) as a set of 

"generating formulae", we look upon (4.44) as defining a transformation 

of variables. This transformation evidently carries ß in xyz-space Into 

the unit cube in rir2r3-space; moreover, it has the convenient property 

that its Jacobian is given simply by [cf. (2.30) and (2.32)] 

3(ri,r2,r3)  
Hi 

(4.45) 

Thus» the transformed integral 
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I « llLi^'zAjt^h^ unit 
cube 

takes the form 

I = /dri/dra/dra h(ri,r2,r3) 
0    0    0 

where 

h(ri,r2,r3) * |^|f(x,y,2) 

(4.46) 

(4.47) 

with x,y and z now being regarded as functions of ri,rz and ra through 

the inverse of Eqs. (4.44). 

Alternatively, if the functions a. and b. in (4.43) are analytically 

so complicated that Eqs. (4.44) are intractable, one can try the simple 

"linear stretching*' transformation 

ri = [x-ai]/[bi-ai] 

n  = [y-a2(x)]/[b2(x)-a2(x)] 

ra - [z-a3(x,y)]/[b3(x,y)-a3(x,y)] 

(4.48) 

Like (4.44), this transformation also carries Q  in xyz-space into the unit 

cube in ri^ra-space; however, its Jacobian is given by 

.d,iX'ltZl  S = [bi-a1][b2(x)-a2(x)][b3(x,y)-a3(x,y)]    (4.49) 
d(ri,r2,r3) 

instead of (4.45). Applying this transformation to I in (4.42) we again 

obtain an expression of the form (4.46), except that the integrand is 

now given by 
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hCri.rz.ra) - [bi-aiHb2(x)-a2(x)] Ib3(x,y)-a3(x,y)]f (x,y,z)     (4.50) 

Instead of (4.47), where x,y and z are functions of ri, rz  and r^ 

through the inverse of (4.48). If one has the option of proceeding 

via either (4.44) or (4.48), the optimal way will normally be the one for 

which the function h [either (4.47) or (4.50)] is a more nearly constant 

function of n, rz and rs inside the unit cube, since this will produce a 

smaller uncertainty in the subsequent Monte Carlo averaging of (4.46). 

If one is not able to specify Ü  in the ordered form of (4.43), one 

can try enclosing Q in a larger region ß* ifhich can be so represented; 

for example, fi' might be taken to be a simple box-like region which has 

Q as a subregion.  For any such covering region Q*  we define 

ff(x.y,z) £ 

|f(x,y,z),  if (x,y,z)e^ 

0 If (x,y,z)^ 
(4.51a) 

so that the integral (4.42) can be written 

I « ///f,(x,y,z)dxdydz (4.51b) 

This expression may now be reduced by either of the methods just described 

to the form (4.46).  If this procedure too proves fruitless, then one 

either must find some transformation of variables (x,y,z)^(xf»y1,zf> which 

carries Ü  into a region Q' for which one of the above methods can be 

applied [cf. (3.30)], or else one must consider abandoning the Monte Carlo 

approach altogether. 
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The foregoing observations should make It clear that all the standard 

methods of "preparing" the integral (4.40) for the Monte Carlo averaging 

process can actually be regarded as transforming the given integral to the 

form (4,41). The underlying reason for this is that, in the final analysis, 

our only input data in a Monte Carlo calculation are random numbers from 

the uniform distribution in the unit interval. Therefore, any n-dimensional 

Monte Carlo integration ultimately amounts to the calculation of the average 

of some function with respect to the uniform distribution of points inside 

the n-dimensional unit cube. From this point of view, the generating 

formulae [e.g., the inverses of (4.44) or (4.48)] are merely equations which 

help specify how the function h(ri,...,r ) is obtained from the given 
n 

integrand f(x). 

Regarding I, then, as the integral of a function h(ri,...,r ) over the 

n-dimensional unit cube as in (4.41), our proposed importance sampling 

procedure is as follows. First we set up a computer program to calculate I 

by the standard Monte Carlo procedure; that is, we write a computer program 

to implement the steps in (3.22) and Fig, 9, but with f(x) everywhere 

replaced by h(ri,..,,r ) [via the chosen generating formulae for the 
n 

components of it]  and with Q  everywhere replaced by the n-dlmensional 

unit cube. 

Next, we incorporate into this computer program a let  of statements 

which keeps track of, say, the 50 highest and the 50 lowest values of the 

integrand y«h(ri,...,r ) encountered in the course of the calculation, 

along with the coordinates inside the n-dimensional unit cube where these 

extremal values occurred. This evidently entails setting aside (n+l)xl00 
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storage locations [50 for the highest y-values, nx50 for their associated 

coordinates, and likewise for the 50 lowest y-values and their coordinates], 

along with a block of control statements which updates these locations 

for each new point (ri,...,r ) generated. For example, in a three-dimensional 

integration one could define the variables YHI(K), R1HI(K), R2HI(K), R3KI(K) 

for K ranging from 1 to 50, with the understanding that YHI(K) always 

contains the Kth highest y-value found, and (R1HI(K), R2HI(K), R3HI(K)) the 

location of the point (ri,r2»r3) in the unit cube where that value was 

found; simiiarl>, YLO(K) would always contain the Kth lowest y-value found, 

anr (R1L0(K), R2L0(K), R3L0(K)) the coordinates of the corresponding point. 

Then for each new random point (ri,r2»r3) generated inside the unit cube, 

we not only incorporate its integrand value y*h(ri,r2,r3) into the cumulating 

sums Si and Sa [cf. (3.22) and Fig. 9], but we also check to see if y is 

greater than YHI(50) or less than YLO(50).  If, for instance, the former 

were found to be the case, then the current values for YHI(50), R1HI(50), 

R2HI(50), R3HI(50) would be discarded, and the high-values table would be 

shifted so as to incorporate this newest high value and its coordinates at 

the appropriate level. 

Now we make ''Preliminary Run #1", an initial computer run of the 

above Monte Carlo program which uses just enough random points to yield a 

reasonable estimate of the uncertainty A, as well as a reasonable sampling 

of the highs and lows of the integrand inside the unit cube.  We next 

examine the coordinates of the high and low integrand values with a view 

to determining if these extremal values seem to be associated with a 

relatively narrow interval of one or more of the r.-coordinates. To the 
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extent that such an "important" interval on any r.-axis can be identified, 

the idea is to apply an appropriate form of importarce sampling on that 

r.-variable independently of the other coordinate variables. 

Suppose it is found from Preliminary Run #1 that the integrand assumes 

extremal values (i.e., values far from the average integrand value) when- 

ever r falls inside some small subinterval (a ,3.) of the unit interval. 

We then choose some probability density function P.(r.) which is normalized 

on and non-zero in the interval O^r.^l, and which has the further property 

that it is large whenever a <r <3..  In Appendix H we discuss several forms 

for p.|(r.j) which are suitable for various intervals (a ,3.). Since the 

function p.»(r.) is non-zero in 0<r.<l, we can multiply and divide the integrand 

in (4.41) by P.(r ) to obtain 

\ \ \       /Mn r    r )\ 
(4.52) 

Now, in the spirit of the discussion in the first part of this section, let 

us make the change of variable 

r^ rj = / Pj(r)dr = F^r..) (4.53) 

where F.i(r.) is the distribution function corresponding to the density 

function P (r.). From (4.53) it is seen that as r. ranges from 0 to 1, 

r* also ranges from 0 to 1; furthermore, it is seen that dr.' is precisely 

equal to P.(r.)dr.. Therefore, (4.52) can be written 

h(ri,...,r,,...,rn)> 
I - /drr • -Jdr». • •Jdr   ■* 

o     o ^  o n\    P^r ) 
(4.54) 
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where r. in the Integrand is now to be regarded as a function of r* through 

the inverse of (4.53); that is, r -F^r1). Comparing (4.41) with (4.54), 

it is clear that the Monte Carlo uncertainty associated with the latter 

should be smaller than the uncertainty associated with the former; for, 

the large value of the denominator in the integrand of (4.54) for a <r <3. 

will moderate the extremal behavior of the numerator there, with the result 

that the variance of the integrand in (4.54) will be less than the variance 

of the integrand in (4.41). From a slightly different point of view, whereas 

in (4.41) we pick r. randomly according to the unit uniform distribution, in 

(4.54) we pick r randomly according to the density function P.(r.). To 

"correct" for this sampling bias we must introduce a factor 1/P (r ) into the 

integrand, and this factor has been specifically chosen to "smooth" the 

integrand. This is, of course, the basic philosophy of importance sampling. 
t 

If the extremal coordinates list should indicate that when r. is near 

0 (or 1) the integrand assumes high extremal values, while when r, is near 

1 (or 0) the integrand assumes low extremal values, then it may be better to 

use a form of the antithetic variates method inste?-1 of importance sampling. 

To this end we introduce the function 

h'Ori,...,^) 3 -[h(ri,...,r ,...,rn) + liCri,... ,l-r.,..Mrn)] 

the integral of which (over the unit cube) is precisely equal to the Integral 

of h. By taking h1 as Llia integrand we can largely eliminate the extremal 

behavior near r =0 and r.-l, since the two terms in brackets will tend to 

cancel each other whenever r is near 0 or 1. 
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We now incorporate this Importance sampling procedure for r into 

our Monte Carlo computer program, so tnat the calculation will proceed 

via (4.54) instead of (4.41). This wilj require essentially two modifications: 

1° Instead of picking r. as a random number from the uniform 

distribution in the unit interval, we must pick r.f as a 

random number from the uniform distribution in the unit 

interval and then obtain r by inverting (4.53).  [In 

other words, r is now to be picked as a random number 

from the distribution defined by the density function P.(r.).j 

2°  Instead of taking the integrand to be h(ri,...,r ), we take 

the integrand to be h(ri,...,r )/P (r.). 

In carrying out these two steps it is usually convenient to employ a 

computer subroutine which takes rl as input and which calculates and out- 

puts r. and P.(r.). The discussion in Appendix H of several explicit 

importance sampling density functions is given with these subroutine re- 

quirements in mind. 

It should be clear that we can carry out this single variable importance 

sampling procedure simultaneously for as many of the variables ri,r2f...>r 

as might seem to require it.  In general we end up with an expression of 

the form (4,54) with ail the appropriate differentials primed and with 

the given integrand divided by the product of all the importance sampling 

density functions being used. We then modify the original Monte Carlo 

computer orogram according to steps 1° and 2° above for each variable 

being importance sampled, and we nake Preliminary Run //2, using the same 

number of random points as was used in Preliminary Run //I. By comparing 
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the uncertainty obtained In the second run with that obtained In the 

first., we can directly assess the effect of the Importance sampling. 

Further, by examining the coordinates of the new extremal Integrand values, 

we can again Investigate whether these values seem to be associated with 

a small range of any of the r. coordinates. We may find that one or more 

variables not being Importance sampled now seem to require It, and/or we 

may find that variables which are being Importance sampled require some 

adjustment in the form of the density function being used. The latter is 

a particularly frequent finding, and is usually handled most expeditlously 

by adjusting the value of some parameter which controls the amount of 

density function peaking. For example, for an integrand which assumes 

extremal values near r »0, one might try [cf. (H.A)] 

-Fr, w 1 - e 
-r r>o 

the peaking of which around r.-0 is roughly proportional to F. The idea 

is to take F large enough so that low r.-values contribute less to the 

variance of the Integrand; however, if F is taken too large, then one 

will find high r -values contributing extremal Integrand values, thereby 

increasing the variance. Clearly some experimentation will be required to 

discover a reasonably optimal value for F. 

Generally speaking. It will take several "preliminary runs" to 

settle on a good set of Importance sampling density functions. One must 

take care not to make so many preliminary runs that one uses as much or 

more time than the final importance sampling scheme will save. Usually 
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3 to 10 preliminary runs should enable one to do about all that can be 

done by this method. Then, of course, one makes a final long run, or as 

recommended in Sec. 3-3 four final long runs, using as high a value for N 

as time and money will permit to obtain the final Monte Carlo estimate of 

the integral. To save computer storage space and execution time, one 

can remove the extremal values bookkeeping machinery from the program be- 

fore making the final calculational run(s). 

In striving to rf ice the uncertainty by the foregoing importance 

sampling procedure, one should not expect to achieve the minimum uncertainty 

allowed by the general theory of importance sampling, which was discussed 

in tl.^ preceding section [see (4.38)]. The reason is that this simple pro- 

cedure cannot effect extremal behavior caused by correlations between two 

or more variables. One way to see this is to observe that the most general 

importance sampling density function for (4.41) which can be realized by the 

simple method described here has the form 

P(rl,...,r J« Pi(ri)P2(r2)--'P (r ) (4.55a) 
n n n 

However, as we saw in the last section [see (4.37) and also Appendix G], 

the importance sampling density function which minimizes the Monte Carlo 

uncertainty for (4,41) has the form 

P . (ri,...,r ) = const x |h(ri r )| (4,55b) 
min       n n ' 

That P(ri,,,,,r ) in (4.55a) is not generally capable of representing 
n 

Pmin(ri»---»rn) in (4.55b) is obvious. 
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Despite tb<* fact that this simple one-variable Importance sampling 

procedure can achieve at best only a partial reduction In the uncertainty, 

this Is often sufficient, and Is usually better than nothing at all. To 

improve upon this method one would have to search for correlations involving 

two or more variables, but this gets rather Involved. For example, in 

order to conduct a systematic search for two-variable correlations, that is 

for integrand extremums caused by two variables r, and r, together satisfying 

some condition, one would have to make n(n-l)/2 two-dimensional scatter 

plots of the extremal coordinates, one plot for each distinct r,r. pair. 

This is obviously much more complicated than making n one-dimensional histo- 

grams of the extremal coordinates, which is essentially what we do in the 

one-variable importance sampling procedure. A correlation between r and 

r. causing extremal integrand values will show up as a clustering of the 

extremal coordinate points along some narrow band in the r,r, scatter plot, 

just as a clustering in some narrow Interval of the r, histogram would indi- 

cate an extremal producing region of the r.-axis in the one-variable approach. 

If such a band is discovered in the r.r, scatter plot, one can try to find 

some two-variable probability density function P .(r.,r.) which is peaked 

along this band; one then generates r. and r randomly according to P..(r.,r.) 

instead of uniformly, and divides the integrand by P. .(r, ,r.), in exact 

analogy with the one-variable procedure. Alternatively, one might try to 

find some transformation of variables (r.trJ-Kp.,p.) which transforms 

the extremal-producing correlation into one involving p. only, and one 

could then apply the one-variable importance sampling procedure to p.. 

As a simple example of a two-variable correlation, suppose It is 
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found that the integrand h(ri,...,r ) assumes extremal values whenever 

r 1=1*2. This would show up as a clustering of points around the line 

ri^r^ in the rira scatter plot of the extremal value coordinates; in fact, 

if one were sufficiently observant one could probably spot this particular 

correlation in the coordinate listings of the one-variable importance 

sampling procedure. One way to deal with this correlation would be to 

construct a probability density function ?(ri,r2) which is normalized 

on and non-zero in the nra unit square, and which Is peaked along the line 

ri=r2; one then would generate ri and T2  randomly according to P(ri,r2), 

instead of uniformly, and divide the integrand by P(ri,r2). However, a 

simpler method in this case might be to introduce the change of variables 

(ri,r2Mpi,P2) defined by 

Pi - I + |(ri-r2) 

P2 " 2(rl+r2) 

(4.56) 

It is easily verified that this transformation carries the rir2 unit 

square into the P1P2 unit square, and that 8(pi,p2)/9(ri,r2) - 1/2; 

hence we can simply replace dridr2 in the integral (4,41) by 2dpidP2. 

We then proceed to generate pi and P2 uniformly in the unit interval, 

with ri and r2 determined by inverting the above formulae. The point 

here is that the ri^ra correlation will now cppear as an extremal condition 

associated with Q\-l/2  independently of P2; this can be easily handled 

by applying single-variable importance sampling to pi, 

Two-variable importance sampling is obviously a much mors complicated 
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and demanding enterprise than one-variable importance sampling, but 

it is nevertheless quite feasible. It does not, however, appear to 

be feasible at this time to attempt an analogous systematic search for 

and treatment of correlations involving more than two variables. Indeed, 

if one-variable importance sampling proves inadequate, then even before 

attempting two-variable importance sampling one probably should investigate 

the possibility of using one of the other three variance reducing techniques, 

perhaps in conjunction with one-variable importance sampling. 
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Appendix A 

PROOF OF THE REJECTION METHOD FOR GENERATING RANDOM NUMBERS 

Suppose we are given a set of random numbers {x*} distributed according 

to the density function Pi(x), and also a set of random numbers (r } dis- 

tributed uniformly in the unit interval. Let P2(x) be any non-negative in- 

tegrable (but not necessarily normalized) function, which is bounded by 

the finite number B2; more specifically, we require 0^P2(x)^B2 everywhere 

that Pi(x) is non-vanishing.  Suppose we now construct a subset {x.} of 

the set (x!) by the following procedure: Draw a random pair x! and r , 

and take x* to be a member of {x,} if and only if 

P2(xp/B2 >,  ri (A.l) 

This process is repeated over and over, using a new pair x! and r, each 

time, with x' being made an element of {x.} whenever (A.l) is found to be 

satisfied. We shall now prove that the set {x.} constructed in this way 

is a set of random numbers distributed according to the density function 

p(x) . -  P1(X)-P2(X) (Ai2) 

/P1(x')-P2(x')dx' 
— 00 

and moreover that the efficiency E of this generating process—i.e., 

the probability that an arbitrarily chosen element of the set (xl) wi]^ 

be taken to be an element of the set {x,} — is 

00 

E - I /PiCx^PzCx^dx' (A.3) 
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Let Po(x)dx be the probability that a random draw from the set 

{x'}, accompanied by a random draw from {r,}, will produce an element 

of the set {x.} which lies between x and x+dx. Po(x)dx can be expressed 

in two different ways. From one point of view we can write Po(x)dx as 

the product of:  (i) the probability that a randomly chosen element xl 

will become a member of the set {x.}, times (ii) the probability that 

a member of the set {x.} will lie between x and x+dx.  By definition, 

the probability (i) is E and the probability (ii) is P(x)dx; hence, 

Po(x)dx = [E]x[P(x)dx] (A.4) 

From another point of view, we can write Po(x)dx as the product of: 

(ili) the probability that a randomly chosen element x! will lie between 

x and x+dx, times (iv) the probability that an xI-value which lies between 

x and x+dx will be accepted as a member of the set {x.}. By definition 

the probability (iii) is Pi(x)dx. To find an expression for the probability 

(iv), we note that it is just the probability that an x!-value which lies 

between x and x+dx will satisfy the acceptance criterion (A.l); in other 

words, (iv) is the probability that a randomly chosen element r. will 

be less than the quantity P2(x)/B2 (which by hypothesis lies between 

zero and unity). This probability is precisely P: (x)/B:., since the proba- 

bility for an element from {r.} to be less than r, for O^r^l, is just 

F(r)=r [cf. (2.8b)],  Hence, our second expression for Po(x)dx is 

Po(x)dx = [Pi(x)dx] x [P2(x)/B2] (A.5) 
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Now, since P(x) is by definition a properly normalized density 

function, we have from (A.4) 

00 00 

/Po(x)dx « E/P(x)dx = E 
-oo -e» 

But from (A.5) we also have 

00 00 

/Po(x)dX = i  /P1(x)*P2(x)dX 
- 00 ' -00 

Combining the last two equations yields at once the expression for E 

in (A.3). Now, (A.4) implies that 

P(x) = ^ 

Evaluating the numerator from (A.5) and the denominator from (A.3) (which 

has just been established) gives 

p(x) Ä   (l/B2)Pi(x)'P2(x) 

(l^miCx'^PzCx'Mx' 

thus establishing (A.2). QED. 

The "rejection method" presented in Sec. 2-3 is now obtained as a 

special case of the above procedure: For if we take {x*} to be uniformly 

distributed over the finite interval a^x^b, so that 

Pi(x) 
l/(b-a),  for a$x<b 

(A.6) 
0   ,  otherwise 

then according to (A.2) the set {x.} will be distributed according to 
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the density function 

P(x) 
P2(x)/JP2(x,)dx,,  for aOc^b 

othervitc 

and according to (A.3) the generating efficiency will be 

(A.7) 

JPaCx^dx' 
a  

B2(b-a) 
(A.8) 

I 
'■■■ 

I 
I: 

Thus, the set {x.} is distributed over the interval a^xjfo according to 

C-PzCx), where C is a normalization constant, and the fraction of the 

x*fs which are accepted as elements of the set {x.} is just the ratio 

of the area under PzCx) between a and b, to the area under the enclosing 

box of height B2 between a and b. 
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Appendix B 

THE JACOBIAN 

Consider the transformation T from xyz-space to uvw-space, defined by 

T: 
u ■ bvx,y,z) 
v = V(x,y,2) 
w = W(x,y,z) 

(B.l) 

We assume that the inverse transformation T* exists, so that the equations 

in (B.l) can in principle be "solved" for x,y and z in terms of u,v and w: 

T'1: 
x = X(u,v,w) 
y = Y(u,v,w) 
z ■ Z(u,v,w) 

(B.2) 

Let x,y,z and n,v,v  be the orthogonal unit vectors in the two spaces (see 

Fig. 10). Let P=(x,y,z) be any point in xyz-space, and let Pr=(u,v,w) be 

the image of P under T in uvw-space. Let dx be the differential (cubic) 

volume element in xyz-space built upon the three vectors xdx,ydy,zdz 

emanating from P, and let dTf be the image of dx under T in uvw-space. 

We wish to find out how the volume dTf compares with the volume dT(=dxdydz) 

For this we must first find the images e /e ,*? of the respective vectors 
x  y  z 

xdx,ydy,zdz under T; we can then calculate dx' as the volume of the 

parallelipiped built upon ? ,? and e . 
x y     z 

Let Q be the point 

Q « (x-Kix,y,z) = (x,y,z) + (dx,0,0) = P + xdx. 
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FIGURE 10,  Deformation of the differential cubic volume 

element dxdydz under a hypothetical transforma- 

tion T from xyz-space ro uvw-space. 
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The Image of Q under T is evidently 

n»  / .^u.   .3v,    3w, v 
Q " (u+^dx' v+3idx' v^d3t) 

-  (U.V.W)  +  (g-dX.g^dX.^dx) 

" p  + fuSdx + vSdx + w§idx' 

But  since Qf  « P* + £     (see Fig.  10), then we may conclude that the 

image £    of xdx under T is 

-f                yv^U-          .      /N9V,           ,      /v9w, /„ON ex " u^dx + v^dx + "a?* (B-3a) 

It is of course understood that all the partial derivatives here are 

evaluated via (B.l) at the point P. In the same way we find 

£y " u^dy + v3Pdy + w9ldy (B-3b) 

and 

-• ASUJ .       /väV- /v9w, /TJ      Q      \ 
£ - u^-dz + VTr-dz + wr-dz (B.3c) 
Z    dZ      dz      dZ 

Now, the volume of the parallelipiped built upon any three vectors 

emanating from the same point is just the absolute value of the so-called 

"triple scalar product" of these vectors. Thus, we calculate dT' as 

dTf = I? •(£ x? )l (B.4) 1 x  y z ' 

is: 



The triple scalar product can be written in terms of the orthogonal 

components of the three vectors in the form of a determinant: 

x  y z 

(? ) (£ ) (e ) 
X U XV x X w 

c?) (e) cr) 
y u y v   y w 

(?)., (Ov (?>„ ZU ZV    z w 

Inserting the specific components from (B.3) we find 

v^-tfe^*' (B.5) 

where we have defined the Jacobian of the transformation (B.l) by 

3(x,y,z) 

3u 
3x 

3v 
3x 

3w 1 
3x 

3u 

ay 
3v 

ay 
aw 
ay 

8z 
av 
az 

aw 
3z 1 

(B.6) 

Again we note that all the partial derivatives here are evaluated via 

(B.l) at the point P. Putting (B.5) into (B.4), and noting that dxdydz-dT, 

we conclude that 

dT1 ^UlV^ldT 
a(K,y,z) 

(B.7) 

According to (B.7), the absolute value of the Jacobian (B.6) gives the 
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local volume expansion dtVdT produced by the transformation T from 

xyz-space to uw-space. By the same token, we may assert that the 

absolute value of 

3(u,v,w) 

dx 
du 

51 
3u 

3s. 
3u 

3x 
av 8v 

3z 
3v 

ax 
3w 3w 

az 
3w 

in which all of the partial derivatives are evaluated via (B.2) at the 

point P', gives the local volume expansion accompanying the inverse 

transformation T . Since the net local expansion involved in the successive 

transformations (x^z) T (u.v^w) T . (x,y.z) must obviously be unity, 

we have 

|3(u?v?w)l  pCx.yyZ)!  1 
|3(x,y,z)|  |3(u,v,w)| 

whence, 

^(xty>z) 
3(u,v,w) 7 |3(x,y,z) 

(B.8) 

Suppose now we have an integral of the form 

I * ///f(u,v,w)dudvdw 

where f is some function defined in some region R* of uvw-space. 
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Heuristically, this integral can be thought of in terms of a partition 

of uw-space into infinitesinial volume elements, with the value of the 

integral being the number obtained by first multiplying the value of t 

in each infinitesimal volume element by the size of that volume element, 

and then summing over all elements inside R1. Now, if R* is the image 

under T of a region R in xyz-space, or equivalently if R is the image 

of R* under T , then one way of partitioning R' would be to proceed 

as follows: Partition R into infinitesimal volume elements dxdydz-di, 

and then take the volume elements in R* to be the corresponding images 

dt1 of the elements dT under T. Then we would have 

I ffff(d,v>w)dudvdw « JJff(u,v,w)dT
f 

where, on the right, u,v and w denote the location of dx'. Thus, using 

(B.7) and the fact that dl^dxdydz, we conclude 

rfff(u,v,w)dudvdw « |JJf(U(x.y,z).V(x,y)z),W(x,y,z)) 

R' R 

^w)|dxdydz      (B.9) 3(x,y,z) 

This equation shows how the integral on the left "transforms" under the 

transformation T  from uvw-space to xyz~space; it is the rule for 

"changing integration variables" in a multi-dimensional integral. 

It should be apparent from the above results»(B.7) and (B.9), that 

the Jacobian 9(u,v,w)/8(x,y,z) of the transformation T in (B.l) is the 

three-dimensional analogue of the derivative du/dx of the one-dimensional 
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transformation u«ü(x). Indeed, the definition (B.6) shows that 

9(u,v,w)/3(xty,z) automatically reduces to du/dx in the one-dimensional 

case. 
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Appendix C 

ADDING INDEPENDENT RANDOM NUMBERS 

Let {z1  } and {z0   ,}  be two sets of random real numbers with 

density functions P^Cz) and P«(z) respectively. The luean m, and variance 

a^ of the set {z, i} (k=l,2) are then given by [cf. (3.9) and (3.10)] 

tr^ = /zPk(z) dz 

T2 = = /(z-mk)
2Pk(z)dz =Jz

2Pk(z)dz -m^ 
(C.I) 

Suppose we construct a new set of random numbers (Z } by drawing a random 

number from each of the two given sets and forming their sum, 

Zi ^ Zl.i + Z2.i 
(C.2) 

Assuming that the draws from the two sets are statistically independent, 

in that the probability for obtaining any value for z9  depends only 

on P. and not on the value obtained for z- ., then the density function 

P(Z) cf the new set {Z.} is determined by the following statement: The 

probability for Z. to fall in the interval dZ about Z is equal to the 

product of (the probability for z. . to fall in the interval dz, about 

z-} times (the probability for z? . to fall in the interval d(Z-z1) about 

(Z-z.-M» summed over all values of z. .  In mathematical terms we therefore 

have 
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P(Z)dZ « / Pi(2i)dzi*P2(Z-zi)d(Z-zi) 
Zl 

« /dziPi(zi)P2(Z-zi)dZ 

whence 

P(Z) = JdziP^zOPzCZ-zi) (C.3) 

We may thus compute the mean M and variance £2 of the set  {Z } as follows: 

M « /zP(Z)dZ = /dZ[Z-zi+Zi]/dziPi(zi)P2(Z-zi) 

= /d(Z-zi)/dzi[(Z-zi)+zilPi(zi>P2(Z-2i) 

M  - /dZ2/d2l[z2+Z1]Pi(zi)P2(Z2) (C.4) 

Z2 = /z2P(Z)dZ - M2 - /dZ[Z-zi+2iJ2/dziPi(zi)P2(Z-zi) - M2 

« /d(Z-zi)/dzi[(Z-zi)+zi]2Pi(zi)P2(Z-zi) - M2 

l2   « /dZ2/dZl[Z2+Zl]2Pl(z1)P2(Z2) - M2 (C.5) 

Recognizing that the zi and Z2 integrations in (C.4) and (C,5) are 

independent of each other, and moreover that JdziPi(zi)-/dz2P2(z2) = 1» 

it is a simple matter to carry out these integrations using the definitions 

in (C,l). The results are 

M * mi + m2 (C.6) 

E2 - a? + ai (C.7) 
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Thus, provided the elements z. . and z?  are drawn independently of 

one another, the mean and variar.ce of the set (Z.Wz.. +z9 .} will be 

the sums of the respective means and variances of the sets {z- .} and 

{z2 }. Notice in particular that it is the variances a^, not the 

standard deviations a, , that add; this has the consequence that Z  is 

always somewhat less than ai-K72. 

By adding elements from a third set {z^ .} to {Z.}, we see that 
J , i      i 

the set of summed elements will have mean (mi+m2)+m3 and variance 

(Cff+al)+cri.  In general, if each element of the set (Z.) is obtained 

by summing N independently drawn elements from each of the N sets {z1 .}, 
1,1 

(z,, .},...,{zTT .}, then the mean M and variance Z2 of the set {Z.} 
Z, i       N, 1 i 

will be 

M = mi + m2 +...+ \ (C.8) 

and 

Z2 = af + öl  +...+ a2 (C.9) 

v^here ni and a2 are the mean and variance respectively of the set {z, .} 

In particular, suppose that the N sets of random numbers {z. ,}, 
1,1 

{z0 ,},...,{z  } all have the same density function, or in other words, 
i»i       N» 1 

suppose they are all the same set iz,}  with mean m and variance a : 

{zk,i} = {2i}: \ = in, <-°2 (k=l,2,..,N) (CIO) 
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In this case, each element of the set {Z.} can be regarded as the sum 

of N independently drawn elements from the same set of random numbers 

{zi}. According to (C.8) and (C.9), the mean M and variance I1  of the 

set {Z^ will then be given by 

M = m + m+...+ m«Nm (C.ll) 

Z2 = a2 + a2 +...+ a2 = Na2 (c.12) 

Define now the new set of random numbers {Z.} by the rule 

Zj = Z1/N (C.13) 

It is easy to show that the mean M and rms deviation 1  of the set 

(Z } is just going to be 1/N times the mean M and rms deviation Z, 

respectively, of the set (Z h Thus, in view of (C.ll) and (C.12) we get 

M = M/N = (Nm)/N = m (C.14) 

and 

Z = Z/N = (Na2)^2/N = a/N1/2 (C.15) 

We can interpret these results in the following way: If we let Z be 

the "average" of N independently drawn elements from the set {z.}, 

Z « (zj + Z2 +...+ zN)/N, (C.16) 
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then Z can be regarded as an element of a set of random numbers whose 

mean is equal to the mean m of the set {z.}, and whose rms deviation is 

equal to the rms deviation a of the set {z.} divided by /N. Thus, we 

have proved a "weak form" of the Central Limit Theorem, which is discussed 

in the text in connection with equations (3.11) and (3.12). The Central 

Limit Theorem further asserts that in the limit of large N the set of 

random numbers {Z } becomes a Gaussian distribution; in that case we 

can assign the numerical confidence limits in (3.12) [cf. also the discussion 

following (3.19)], which evidently permit a iTiuch more quantitative inter- 

pretation of the rms deviation a//N than can be obtained from the develop- 

ment given here. 
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Appendix D 

THE COVARIANCE 

Let fi(x) and tiit)  be two functions defined on a region 51,  and let 

fO?) denote their sum: 

f(x) = fi(50 + f2(x) (D.l) 

The variances (or mean square deviations) of these functions with respect 

to a uniform distribution in Q  are given by 

and 

a2 =var(f:PQ) = (f
2:PQ> - <f:PQ>" 

0lE va^fi:V s <frp
ß> - (fi:PQ>2'   i-1'2 - 

(D.2) 

Here, the bracket (h:P0) is defined for any function h(x) by 

-1, <h:P0
>) = fh(x)P0(?)d?= Ifil^/hC^dx LQ (D.3) 

Q 

where PQ(X) IS the density function (3.4) defining the set of random 

points distributed uniformly over ft. 

We seek a relation between the variance of f(x) and the variances 

of fi(2) and faCx).  By straightforward calculation utilizing (D.2) 

and (D.3) we have 

var(£:Pfi)=<f2:P^-<f:Pß>
2 

;((f? + 2f1f2 h f?):P0> - <(fi + f2):P^>
2 
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<ff:Pn> + 2<f1f2:Pn> + <fi:Pn>- «fi :Pfi> + (ti^y 

+ 2<f1f2:Pn>-2(f1:Pß><f2:Pn) 

Defining, then, the "covariance of fi(x) and fzCx) with respect to a 

uniform distribution inside Q"  by 

cov(f1.f2:Pn) 5 <fif2:Pß> ^<f1:P^<f2:PQ> ß' 'J/V^-'Q' 
(D.4) 

we have the result 

var(f:P0) - var(fi:P0) + var(f2:P0) + 2cov(fi,f2:P0)    (D.5) tiJ lQ & lQJ 

In fact, it is easy to see that the foregoing arguments admit the slightly 

more general result 

var(aifi + a2f2:Pß) = afvar (f 1 :Pfi) + a2var(f2:P^ 

+ 2a1a2Cov(fi.f2:Pß)  (D.6) 

where ai and a2 are any two constants. 

According to (D.4), the covariance of fi(x) and f2(x) is just the 

average of the product of these functions minus the product of their 

averages. Comparing (D.4) with (D.2) we see that the covariance of any 

function h(x) with itself is just its variance: 
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cov(h,h:Pfi) s var(h:Pfi) (D.7) 

The variance of a tunction is never negative, as can be seen by writing 

it  in the form  [cf.   (3.10)] 

var(h:PQ) «^(h - (h:P^)2 :PQ> 

=  Ißl^/CM*)  - <h:P0>)2dx > 0 (D.8) 

However, the covariance of two different functions can be either positive 

OL' negative. To get some idea of the limits on the covariance, we intro- 

duce the function 

f3(x) = cov(fi,f2:P^)fi(x) - cov(fi.fiiPß)f2(x) 

By using only tne definitions of the variance and covariance, together 

with their implied consequences (D.7) and (D.8), it is a straight- 

forward but slightly tedious calculation to show that the statement 

var(f 3 iP^)^ implies the inequality 

|cov(fi,f2:P0)| ^ /var(fi:P0)Vvar(f2:Poy = O1O2 (D.9) 

where a. is of cou-se the rms deviation of f ,(x) with respect to a uniform 

distribution inside Ü  [cf. (D.2)]. 

Combining (D,9) and (D.5) yields the result 

[01 - Ö2 <: a ^ 01 + 02 (D.10) 
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Thus, the rms deviation of fi(x)+f2(x) assumes its maximum value of 

01+02 when the covariance of fi(x) and faOc) assumes its maximum value 

of +Oia2.  Similarly, the rms deviation of fi(x) and f2(x) assumes 

its minimum value of |ai-a2| when the covariance of fi(x) and f2(x) 

assumes its minimum value of -0102.  If the covariance of f](x) and f2(x) 

happens to vanish, then the rms deviation of fi(x)+f2(x) will be /01+02. 

It is sometimes convenient to define the "correlation coefficient" 

p 01 fi(x) and f2(x) by 

cov(fi,f2:PQ) 

P = /var(fi:Pß)/var(f2:Pß) 
(D.ll) 

The inequality (D.9) Implies that 

-1 ^ p ^ +1 (B.12) 
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Appendix E 

THE VARIANCE OF A FUNCTION OVER A PARTITIONED REGION 

Let f(?) be a function defined in a region fl, and let ^ be partioned 

into n subregions ßi, Qj,...^ . We define a. to be the ratio of the 

volume of ß. to the volume of ft: 

Oi.   = l^l/W (E.l) 

The condition that the union of the n non-overlapping subregions be 

equal to Ü  implies that 

L a - 1 (E.2) 
j»l J 

We have [cf. (3.5)] 

I^Kf:?^ = /f(*)d*= I    /f(5?)dx-  nSKf:PQ> 
n j=i ü. j^i  J        j 

or 

<f:P) = I   a <f:PQ) (E.3) 

This expresses the average  of f(x) over ft in terms of the averages of 

f(x) over the various subregions fti, ftz,..., ft . What we would like 

to do now is derive an analogous expression for the variance of f(x) 

over ft. 

Replacing f by f2 in (E.3), we have 
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inserting this and  (E.3)  into the usual expression for var(f:Pn). «e 

have 

varCf.Po) = <f2:Po>  " <f:PQ> 

■  h<^fa>-(h<f:V)2 

j J J 3 J 

-IIVk<f:PQ.><f:P^ 
j^k 

=h(^^>-<f:v2)i(aj'^H£:^>: 

-^A<£!V<£:V 

»WvarCf^ + KCl-V^? 
'j      J 

- 211 a^-^X1 ^ 
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Using (E.2) we can rewrite the second term in the following way: 

la Al -a )<f:P  >2 = K( I aVf.P  y 

na\<f:Pn> 
ji»k j k       "j 

2 

j<k 1 k       u<!j j<k j R       "k 

j<k ^ k      uuj "k 

Inserting this into the previous expression for var(f:P0), we find ÜJ 

var(f:P0) » ^a var(f:P0 ) + H a a 

x   «f:P   >^<f:P   >^-2(f:P><f:P   >) 
3 k j k 

or equivalently 

var(f:P0) =    I a var(f:P0 ) 

n    n 
(E.4) 

j«lk»l j  ^^       iüj "k / 

j<k 

The result (E.4) expresses var(f:Pfi) as a sum of two terms:  the 

first term is due to the variations in f(?) within the various subregions, 
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and the second term is due to the variations in f(x) among the various 

sub'-egions. In particular, since the second term ic never negative we 

have the corollary 

11 

var(f:P0) ^ I a var(f:P^ ) 
"   1*1 J      j 

(E.5) 

which is to be contrasted with the result (E.3), 
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Appendix F 

OPTIMUM APPORTIONMENT IN STRATIFIED SAMPLING 

In the "stratified sampling" procedure discussed in Sec. 4-4, 

the region of integration Ü  is partitioned into n subregions ^1,^2»...,^ » 

and a separate Monte Carlo integration is performed in each subregion. 

The square of the uncertainty associated with this Monte Carlo procedure 

is [cf. (4.24)] 

A 2 - I   I^N 
j-1 

-1 

n (F.l) 

where a, is the variance of the integrand with respect to the uniform 

distribution of points inside Q . We wish to find the set of values 

Ni, N2, ..., N which minimizes (F.l), subject to the condition 

IN -N (F.2) 

Suppose that, for a given set of N. values, we vary each by a small 

amount 6N . These variations are presumed to be consistent with condition 

(F.2) but otherwise quite arbitrary;  in other words, all we require of 

the small variations 6N1, 6N2,..., 6N is that they be such that 

6N * 6 ^ N = 0 

or equivalently, 
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n 

j-1 ^ 
(F. 3) 

Now these small variations in the N.'s will induce a small variation in 

A*2 
A  in the amount 

6A*2 = « I IfiJ^NT1 
j-1 ■'  J J 

j-i j j j 

= I In/a^-N^) 

6A*2 = 

n 

I 

n u 2 
- - J fi.I2afN7 ON. 

j«l j   j j   j 
(F.4) 

In particular, if the variations 6N. are all taken about the minimizing 

values N., then the variation in A  will evidently vanish; hence, we 

have 

I  Ifi |2a*N:26N4 - 0 (F,5) 

Now, the only way for (F.5) to hold for every set of variations 

(6Ni,6N2,...,6N ) which satisfies (F.3) is for the quantity multiplying 

(SN, in (F.5) to be a constant, independent of j: 

ftj'^jSij2 = C2,     j-l,...,N (F.6) 
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For then and only thei. will (F.5) be satisfied without requiring of 

the variations ON anything more than is required by conditions (F.3). 

We therefore have 

-li 

Vc lVaj 

which says that N. is proportional 

times the rms deviation a.. 

The constant C is determined simply by requiring the values N, 

to satisfy (F.2): 

(F.7) 

to the product of the volume \Q. 

J/i-^nnJ^.N 
(F.8) 

Therefore, 

vKn^i)!^ (F.9) 

With this result we can immediately calculate the minimum value of A 

l/n       v n 

1»1   1   l/J-l 

172 

H7HMM i inviiiiiwiiiMMii ii ^.äjü 



■■ .■■.*^(*J^'3=jPji« 

whence 

min j^1    j    j (F.10) 
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Appendix G 

OPTIMUM DENSITY FUNCTION FOR IMPORTANCE SAMPLING 

The importance sampling procedure discussed in Sec, 4-5 is based 

on the fact that the integral 

I = Jf(x)dx (G.l) 
Q 

can be regarded as the mean of the function f(x)/P(x), taken with 

respect to the set of random points {?.} distributed over Q  according to 

the density function P(x): 

I = /[f (S)/P(x)]P(x)d5? = <f/P:P> (G.2) 
Q 

If we estimate this mean by averaging a finite number N of randomly 

chosen elements of the set {f (x.)/P(5?.)}, then the square of the uncertainty 

in our estimate will be 

A*2 = <(f/P)
2:P> - <f/P;P>2 

N 

= N^I/ffC^/FCf)]2?®^ - r 

or 

A*2 - n^lJ  ~ I2) (G.3) 

where we have defined 

,-1 .-V .- J =  /f2(x)P~i(x)dx (G.4) 
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We now ask the question, what density function P(x) will render 

*2 
A  a minimum? Since the quantities f, Ü  and N are presumed fixed, then 

*2 clearly A  will be a minimum if and only if J is a minimum. 

Let Po(5) be the minimizing function; that is, Po(x) satisfies the 

conditions 

Po(x) ^ 0  for teü (G.5) 

and 

/PoOOdx = 1 (G.6) 

and furthermore, of all functions P(x) which satisfy these conditions, 

Po(x) causes J in (G.4) to assume the smallest value. Form the family 

of functions P (x) according to 

P£(x) = Po(x) + eri(x) (G.7) 

where t is a real variable (the family parameter), and where ri(x) is 

any function which satisfies the condition 

;,l(x)dx = 0 (G.8) 
Q 

With Cr.M, this condition on nCI?) evidently insures that each function 

P,^x) ir. (G.7) satisfies the requirement 
b 

/Pe(5!)d5? =1 (G.9) 
Q 
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It follows, then, that the quantity 

J(e) = /f'C^P^Äcix (G.10) 
Q € 

has  a minimum at e=0. Differentiating (G.10) with respect to e gives 

J'(e) =yf2(Z)?-l$)dx 

«ftH^hdd* 
Ü 

-2^ d 
- /f2(5?)[-p-Z(5f) iPr(5?)]d? e VAy 9e e' 

or, wi:h (G.7), 

J'(G) = -/f2(x)P:2(^)n(x)d5? (G.ll) 

The fact that J(e) has a minimum at e=0 implies that J,(0)=0; hence, 

we have 

/f2(x)Po2(x)ri(x)dx - 0 (G.12) 
Q 

Now, the only way for (G.12) to hold for every function n(x) which 

satisfies (G.8) is for the quantity multiplying ri(x) in (G.12) to be 

constant over Qi 

f2(x)P;2(x) E C2, all xeü (G.13) 
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For then and only then will (G,12) be satisfied without requiring of 

TI(X) anything more than is required by condition (G.8). Combining 

(G.13) with (G.5) yields the result 

-1 I . /-x Po(x) = C^lfCx)!, 00 (G.14) 

The precise value of C is then determined through requirement (G.6); 

1 = /PoCx^dx' = C 1/|f(3?,)|dxf (G.15) 

Therefore, the density function Po(x) which minlTnizes J, and hence A  , 

is 

Poo?) = \ta)\ll\t{r)\<ir (G.16) 

With this result we can easily calculate the minimum value of J: 

-w.-l, J .  = J(£=0) = /f2(x)Fo (x)dx 
in 1 n ' rain 

Ü 

= /Ifcr'-ld^^jf2^)^^!"^? 

=• /IfC^Mldx'-JIf^ldx 

whence 

^minM^^I^ 
(G.17) 
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The minimum value of A 2 is thus [cf. (G.3)] 

*2  . .T-1|T     T2| A ; = N " J , - I 
min     I min 

or 

Using the identity a2-b2=(a-b)(a+b), this result can also be written in 

the form 

A*? =4N-1/ |f(*)|d*-/Jf(*)|d* (G.18b) 
min      Q"        Ü 

where P. is the subregion of Q  in which f{i)<0 and ft    is the subregion 

of SI in which f(x)>0.  It follows from TG.lSb) that A*2 will vanish if 
' min %        

and only if fCIf) never changes sign inside 9  (in which case either 

|n j or fi  vanishes). 
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Appendix H 

SOME ONE-VARIABLE IMPORTANCE SAMPLING DENSITY FUNCTIONS 

The basic idea behind the one-variable Importance sampling technique 

described in Sec. 4-6 may be briefly stated as follows:  In a Monte Carlo 

calculation of the integral 

/ar.---/ 
0      0 

I = jdn" •/drnh(ri>.J.>rn) (H.l) 

we may generate any particular coordinate r inside the unit interval 

according to a non-uniform density function P(r ), provided we take 

h(ri,...,r )/P(r.) as the quantity to be averaged instead of h(ri,...,r ). 

Doing this can be advantageous if h(ri,...,r ) happens to assume extremal 

values whenever the variable r. falls inside some small subinterval 
2 

(a.,ß.) of the unit interval. For then, by choosing P(r.) to be large 

whenever Qt <r.<3,, thp denominator in the quantity being averaged will 

moderate the ex :reinal behavior of the numerator in that critical r. interval. 

As a result, the variance of the values being averaged will be reduced, 

and the Monte Carlo uncertainty will be made smaller. 

In this appendix we shall describe several simple density functions 

P(r) which can be used for one-variable importance sampling. Generally, 

any such density function must satisfy the requirements 

P(r)>0 for O^ra (H.2a) 

tp(r)dr (H.2b) 
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The condition (H.2a), that P(r) not vanish inside the unit interval, 

is simply to insure boundedness of h(ri,..,,r )/P(r) [r stands of course 

for one of the r. variables], and can be relaxed at any point where 

IrK) faster than P-K). As discussed in Sec. 4-6, in order to actually 

importance sample the variable r according to a given density function 

P(r), it is most convenient to have a computer subroutine which does the 

following: 

1° Accepts as input a number r* in the unit interval.  [Normally, 

r' will be a given random number from the uniform distribu- 

tion in the unit interval.] 

2° Calculates and outputs that value r which satisfies 

r1 = F(r) (H.3) 

where F is the distribution function corresponding to the 

density function P.  [This number r will be used in 

evaluating h(ri,...,r ).] 

3° Calculates and outputs the value P(r) for the r value 

found in 2°.  [This number P(r) will be divided into 

h(r:,...,rn).] 

In what follows wa shall develop equations from which such a computer 

subroutine can be written f^r three simple functions P(r) that the author 

has found to be particularly useful.  In addition, we shall see how one 

can go about constructing a one-variable Importance sampling subroutine 
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for an arbitrarily shaped density function P(r) 

P(r) « e"rr (r>0) 

This density function is often useful in cases where the integrand 

h assumes extremal values whenever r is near 0. The size of the 

parameter F is to be chosen, normally by trial-and-error, to be com- 

mensurate with the degree of peaking of h near r=0; the greater this 

peaking the larger T  should be. The normalization condition (H.2b) allows 

us to determine the normalization constant, and one easily finds that 

the correctly normalized density function is 

P(r) T-— e'rr  (0<r4l) (H.4) 
1 - e'r 

The calculation of the corresponding distribution function is straight- 

forward, and yields 

r i ^ -rr 

F(r) E /PCr^dr' = 1 " e fr (H.5) 
o 1 - e"1 

We note as a check that, as r increases from 0 to 1, F(r) also increases 

from 0 to 1.  Putting (H.5) into (H.3) and solving for r yields 

r = - ^n[l - r,(l-e"r)] (H.6) 

Thus, given any r' between 0 and 1 [item I0], we calculate r from 

(H.6) [item 2°]; then, using this valae of r, we calculate P(r) from 
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(H.4) [Item 3°]. 

P(r) « e~r(1"r)  (r>0) 

This density function is often useful in cases where the integrand h 

assumes extremal values whenever r is near 1. The larger these extremal 

values are, ..he greater the value of F should be. Since this density 

function is just the mirror Image of (H.4) about the line r=l/2, the 

normalization constant is the same: 

P(r) =  Ly e"r(1"r)  (0^<1) (H.7) 
1 - e"1 

The calculation of the corresponding distribution function is straight- 

forward, and yields 

r Fr - 1 
F(r) = /PCr^dr' = ^  (H.8) 

o e1 - 1 

Putting this into (H.3) and solving for r yields 

r = ^n[l + r,(er-l)] (H.9) 

Thus, given any r1 between 0 and 1 [item I0], we calculate r from 

(H.9) [item 2°]; then, using this value of r, we calculate ?(r) from 

(H.7) [item 3°]. 

^ P(r) - l/[(r - ro)2 + F2]  (O^roa, F>0) 
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This density function is often useful in cases where the integrand 

is peaked whenever 

Max(0,ro-r) < r < Min(l,ro+r) 

where ro is any point in the unit interval, "ae greater the integrand 

peaking at rp, the smaller the value of V  should be [in contrast to the 

two previous density functions]. The normalization constant is easily 

determined by requiring P(r) to satisfy (H.2b), and the correctly normalized 

density function is found to be 

P(r) '(^(r^roi^r^ ^ (H.10) 

where the constants A and B are defined by 

A 2  ar, t if^-=-M , B =  arctanfp| (H.ll) 

The calculation of the corresponding dist Ibution function yields 

F(r) E r/P(r')dr» - (^)(arctan|^-0| + B) (H.12) 

Putting this into (H.3) and solving for r yields 

r = ro + rtan[rf(A + B) - B] (H.13) 

Thus, given any r' between 0 and 1 [item I0], we calculate the corresponding 

value of r from (H.13> [item 2°], wherf. A and B are defined in CH.ll); then, 
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using this value of r, we calculate the value P(r) from (H.10)[item 3°]. 

The sharpness of the peaking of each of the foregoing three density 

functions is controlled by the single parameter F, which parameter can 

be varied in the "preliminary runs" to determine a more or less optimal 

value [see Sec. 4-6], The shape of each of these density functions is 

clearly restricted by its analytical form; however, it usually turns out 

that one's knowledge of the dependence of the function h(ri,...,r ) on 

any one of its variables is so meager that one usually cannot take advantage 

of very much flexibility in the shape of importance sampling density 

functions. Nevertheless, situations do occasionally arise in which one 

clearly sees the need to importance sample some variable r according to a 

density function P(r) of a very specific shape.  If, in such a case, it 

appears to be impractical to find an analytic form for P(r) which is simple 

enough that its distribution function can be calculated and inverted, then 

one can always approximate the desired P(r) curve as closely as necessary 

by a piecewise linear curve, as indicated in Fig. 11. The point here is 

that it is fairly easy to write a computer subroutine which will: (i_) accept 

the "pivot points" (p.»a ) on input data cards; (ii) scale the ordinates 

a. so that the total area under the piecewise linear curve is unity, there- 

by rendering the piecewise linear curve a properly normalized density 

function; and (iii) calculate, for any given value r' between 0 and 1, 

that value r for which the area under the piecewise linear curve between 

the vertical lines through 0 and r is equal to r'. This last step is of 

course equivalent to inverting the distribution function corresponding to 

the piecewise linear density function. 
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FIGURE 11.  Approximating an arbitrarily shaped, 

one-variable density function by a 

piecewise linear density function. 
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To carry out item (11) above, one need only recognize that the "raw 

area" A, under the trapezoid between r=p. and r^P^ Is [see Fig. 11] 

Ai = (p1+1 - p^ + i-(pi+1- Pj'ia^- ap        (H.14) 

and the total area under the plecewlse linear curve can be made unity If 

each ordlnate a Is simply divided by the total raw area I.A.. Having 

thus normalized the plecewlse linear curve, one can carry out item (ill) 

by observing that the area under the curve between r=p, and r-p (p.^p^p. ..) 

is [cf (H.14)] 

A = a(pi+r p^-a. + |-a(pi+1- P^-aCa^- a^ 

where a is the fractional distance of p from p. to p.,,; 
i    i+l 

ot = (p - Pi)/(Pi+1- Pi) 

From these two equations one can show that the value of p which corresponds 

to a given value of A (A^A.) is 

P » 

(Pi + A/c^ , if ai+1 = 0. 

pi + (/a^2Am; - aj/m.. if ai+1 ^ ai 

(H.15) 

where 

mi r (ai+l' Gi)/(pi+l" ^^i^ (H.16) 

In applying these equations it is important to note that it is not 
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necessary for the points p. to be equally spaced along the r-axis; 

all that Is required is that each p. be greater than P^_-, t and each 

a be positive. 

With the ability to generate random numbers in the unit interval 

according to any bounded, piecewise linear density function, we obviously 

have great flexibility for carrying out the one-variable importance 

sampling procedure described in Sec. 4-6. However, as mentioned pre- 

viously, one^ knowledge of the behavior of the integrand h(r-,«#»fr ) 

as a function of any of the variables r, is usually so limited that one 

I      usually cannot take full advantage of this flexibility. In practice, 

therefore, a simple analytic density function, like one of the three 

described earlier, usually proves adequate. 

s 
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Appendix I 

REMARKS ON THE MARKOV CHAIN MONTE URLO METHOD 

In the field of statistical mechanics one is confronted with the 

task of calculating macroscopic properties, of systems composed of very 

many Identical microscopic components which interact according to known 

(or hypothesized) laws. Examples are the calculation of the equation of 

state of a gas composed of molecules which interact via a specified inter- 

molecular force, and the calculation of the magnetization of a lattice 

of atoms whose magnetic moments interact with each other and with an 

external magnetic field according to the laws of electrodynamics. Typi- 

cally, these calculations require the evaluation of one or more n-dimensional 

integrals, w'ere n is of the order of the number of microscopic components 

(e.g., molecules or atoms) in the system under study.  In most cases 

these integrals cannot be calculated either by analytical methods or by 

classical numerical methods; in fact, it usually happens that even the 

conventional Monte Carlo method breaks down for these problems.  As a 

consequerce, workers in this field usually employ another Monte Carlo method, 

one which was first used by Metropolis and co-workers in 1953 to calculate 

However, in Sec. 2-10 we derive a set of generating formulae [see (2.94)] 

which might be used to calculate by the conventional Monte Carlo procedure 

the equilibrium properties of a one-dimensional gas of impenetrable 

molecules. 
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the equation of state of a two-dimensional gas of hard disks (Ref. 10). 

The distinguishing feature of this Monte Carlo approach is that it utilizes 

the mathematical concept of a "Markov chain" or a "Markovian random walk". 

It is not our purpose in this report to lay out the theory of this special 

Monte Carlo technique; however, the successes of the Markov chain approach 

have become so well known that any introduction to Monte Carlo methods 

would be incomplete without some discussion of it. Therefore, in this 

appendix we shall give a very brief description of the Markov chain Monte 

Carlo method; for more explicit discussions, the reader should consult 

Chapter 9 of Hammersley and Handscomb (Ref. 1), and the extensive review 

article by Wood (Ref. 11) and references contained therein. 

The general problem is once again to evaluate an integral of the form 

I = /f(x)P(3c)dx (1.1) 
Ü 

where P(x) is a probability density function normalized o. :r the finite, 

n-dimensional region ^. In the context of statistical mechanical appli- 

cations, the multi-dimensional variable x usually specifies the physical 

"state" of some system (e.g., the spatial coordinates of all the molecules 

in a gas, or the magnetic moment orientations of all the atoms in a 

magnetic substance); Q is the set of all physically allowable states; 

f(x) denotes the value of some dynamical variable f when the system is 

in state x; and P(x)dx denotes the probability for a randomly chosen 

svstem from an appropriate "statistical ensemble" of systems to be in 
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some state in the Infiaiteslmal region dx around x. The form of the 

function P(x) is given by the laws of statistical mechanics, and is 

usually taken to be the "microcanonical ensemble" probability density 

PC?) - e-u(x)/kT/Je-ü(r)/kTdj.    m) 

where U(5t) is the total energy of the system in the state x, T the 

absolute temperature, and k Boltzmam^s constant. In this context, 

the value of I in (1.1) would be interpreted physically as "the equili- 

brium value of f at temperature T". The dimensionality n of ^ is 

usually quite large, and P(x) is usually analytically complicated an. 

f 
exceedingly small over most of Ü,        More often than not, these conditions. 

combine to make it totally impractical to generate random points according 

to P(x) by either the inversion method or the rejection method; as a 

result, the Markov chain Monte Carlo method frequently offers the only 

hope for evaluating I. 

In the Markov chain approaca, it is convenient to regard the 

+ 
With reference to the problem of the one-dimensional gas of impenetrable 

rods discussed in Sec, 2-10, the region Q considered here would be more 

properly associated with the region I in (2,95) rather than the region Ü 

in (2,77), The complicated nature of P(x) in that case arises from the fact 

that P(x) vanishes everywhere inside £ (2.95) except in that extremely 

small and oddly shaped subregion Ü  (2.77). 
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space of the variable !l as being discrete rather than continuous. For 

this we can imagine setting up in the space of x a very fine n-dimensional 

cubic grid or mesh, which subdivides Ü  into a total of B "cells" of equal 

size Ax. We number these cells by the index i in any convenient fashion, 

and we let x denote the center of the i  cell. Thus, whereas originally 

the system could be in a non-denumerably infinite number of states xefi, 

we now suppose that the system can only be in one of the B states 

xi ,5c2 ,... »xL in fi. It is of no concern to us, either theoretically or 

practically, how extremely large B is, just so long as it is finite. 

Now, since P(x) in (1.1) is normalized over Q, then provided the mesh 

size Ax is taken sufficiently small we can write with negligible error 

B 
Jf(x)P(x)dx    I  f (x.)P(5?.)Ax 

_ Ü i»l  1   1 

I E ■ . ^ "1 B 

j 

Jp(3t)d5r      I P(5?.)Ax 
ß 1=1 l 

Hence, 

This situation is always realized on a digital computer: If 10  is 

the smallest number the computer can handle without "underflowing", 

then the computer will necessarily regard the n-dimensional unit cube as 

a collection of B«10  discrete points on an n-dimensional cubic lattice. 
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I - I  f(?l)7T1 (1.2) 

i«l 

where 

B 
^ = P^V i P^j)  (i=l.-..,B) (1.3) 

is the (correctly normalized) probability associated with the discre*-^ 

state x . 

If we could somehow generate N random states x    ,x^ ,.., ,x*, according 
H   h        h 

to the probabilities TT in (1.3), then we could approximate I as the average 

of f over these states, 

i - s lt(r ) (i.4) 

with the associated uncertainty being determined in the usual way from the 

variance of the values being averaged. However, by hypothesis it is not 

possible to generate such a set of random states by any of the conventional 

Monte Carlo methods. 

At this point we introduce the (seemingly unrelated) concept of a 

Markovlan random walk over the lattice of points x,  inside Q. More 

specifically, we consider a walk over these discrete states which is 

governed solely by a set of one-step probabilities p..(i,j-l,...B), 

defined by 

p.. = the probability that y if the walker is at state x., the 
i;j i 

next step will carry the walker to state x .      (1.5) 
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It should be clearly understood that such a random walk over the 

states x. has nothing at all to do with the actual time behavior of 

the physical system under study; the random walk is merely a mathematical 

artifice which we are Introducing in order to effect a calculation of the 

integral I. The adjective "Markovian" simply means that the probability 

of walking from x. to "x. is independent of the past history of the walk 

(i.e., of where the walker was before coming to state "x.); if the situation 

were otherwise, the random walk would be "non-Markovian", and would not 

be describable simply by the Br: probabilities in (1.5). 

Since p.. is a probability, we have 

0 ^ p  $ 1  (i,j-1 B) (1.6) 

Furthermore, since the walker will always step from x. to some x., 

we have 

j-l 
p^ « 1  (i«l,..MB) (1.7) 

The probability \s™   that the walker will go from xi to T   in two steps 

is, by the multiplication and addition laws for probabilities. 

J2) 
B 

Pij ^ J^ik'kj 

In general we define the n-step probabilities p? (i,j«l,,,.,B) by 
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p.. - the probability of walking from state x. to 

.täte "x" in n steps. (1.8) 

It is clear that p(i\-p.., and that for any n^2 

B B B 

I        I   •••!        pikiPkik9* 
ki=l k2=l k    ,=1 ikLl  ,Clk2 

n-i 
••pk ,i 

n-lJ 
(1.9) 

If we regard the probabilities p  as elements of a BXB matrix £ 

P = 

pll p12 ••' P1B 

P21 P22 ... P2B 

•  •  • 

pBl pB2 ••• pBB 

(I.10) 

then (1.9) simply says that the BxB matrix ^n) of the n-step probabilities 

JW 
p.  is obtained by multiplying P by itself n times: 

f-l* (1.11) 

Granted, then, that we can conceive of a random walk over the discrete 

sta:es x, in fi, the walk being characterized by a one-step probability 

mat -ix P, what does this have to do with estimating the quantity I in 

(1.1)1    The answer to this question is supplied in part by the following 
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theorem [a rigorous proof of which may be found in Chapter XV of 

Ref. 8]: 

Theorem: Suppose that, for a given set of state probabilities 

TT , we have a set of one-step probabilities p.. which satisfy 

the following two conditions: 

A (Ergodic Condition).  If x. and x, are any two states 

in Ü with non-vanishing probabilities TT and IT., then there 

exists some finite n for which p.. > 0. 

B (Steady State Condition). 

B 
I  Trtp  = TT , for all j=l,...,B (1.12) 

Then we will have, independently of i and for all j: 

lim p^. - 7i (1.13) 

In other words, if for a given set of state probabilities TT, we can 

construct a random walk matrix £ which satisfies conditions (A) and (B) 

above, then by starting a random walk in any state x,, the probability of 

winding up in state x. after a sufficiently large number of steps will 

be IT,. The ergodic condition (A) essentially requires X to ^e such that 

any possible state x. be reachable from any possible state x. by a finite 

number of steps. The steady state condition (B) essentially requires £ to 

be such that if many walkers are randomly distributed over the discrete 
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states x. according to the probabilities TT , this random distribution 

of the walkers will not be altered if each walker steps once according 

to P. From a strictly mathematical point of view, the steady state 

condition (1.12) requires the one-step probability matrix P to have the 

state probability vector 

TT2 

TT = (1.14) 

as a left eigenvector with eigenvalue unity; that is, TT»P - TT. 

Before inquiring into the possibility of finding, for a given set of 

state probabilities TT , a set of one-step probabilities p.. satisfying 

conditions (A) and (B), let us consider what we should do once we have 

found such a set. On the basis of conventional Monte Carlo theory we 

might proceed as follows: Starting out in any allowable initial state 

x. , take a "sufficiently large number n" of successive steps according 

to p.., and then regard the state arrived at at the n  step to be a 

state randomly chosen inside Q according to the prescribed state proba- 

bilities TT , Repeating this process N-l more times would give us the 

N random points xj necessary to calculate the estimate of I in (1.4). 

j 
An obvious question here is precisely what constitutes a "sufficiently 

large value" of n; in other words, what is the smallest value of n that 
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K 

will allow us to read (1.13) as ^-v,  for all i and j? 

We cannot answer this question in any realistic situation; however, 

it is somewhat academic anyway since the foregoing procedure is not the 

one normally followed in the Markov chain Monte Carlo method. Instead, 

the usual procedure is to approximate I by the so-called chain average 

i N  «-\ 
^ | I  f(^) (1.15) 

N 

I 
't-l 

where xT is the discrete state arrived at at the t  step of an N-step 

random walk according to P. [The sequence of states #\ x^, ..., x. is 

referred to as a "realization of the Markov chain".] The justification 

for this procedure is the "Central Limit Theorem for Markov chains" [see 

p. 119 of Ref. 11]; this theorem says in effect that if conditions (A) 

and (B) cited above are satisfied, then provided N is sufficiently large 

the chain average on the right side of (1.15) will be Gaussian distiibuted 

about the value I with a standard deviation proportional to l/vSe 

Like the Central Limit Theorem which forms the basis for the conventional 

Monte Carlo method [cf. Sec. 3-2], the Central Limit Theorem for Markov 

chains does not tell us how large N must be in order for the Gaussian 

distiibution to be realized. However, in view of the asymptotic nature 

of (1,13), one has the intuitive suspicion that N will usually have to 

be very much larger for the Markov chain process than for the ordinary 

Monte Carlo process in order for Gaussian results to be obtained.  If the 

convergence of (1.13) were "immediate", that is if P^-TT. for n«l, then 
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the Markov chain average in (1.15) would evidently be equivalent 

to the conventional Monte Carlo average in (1.4). But to the extent that 

the convergence of (1,13) requires large values of n, it seems reasonable 

to suppose that the Markov chain average in (1.15) will require many more 

terms in order to yield results comparable to what might be expected from 

a conventional Monte Carlo average. 

Let us now consider how one might go about constructing, for a given 

set of state probabilities IT , a set of one-step probabilities p.. 

satisfying conditions (A) and (B).  It turns out that, so far as the 

ergodic condition (A) is concerned, one usually can only hope for the 

best. Certainly, one should not use any walking scheme which is obviously 

incapable of reaching all possible states x. in Q. However, difficulties 

can arise if Q  consists of "islands" of high probability states in a "sea" 

of very low probability states, in which case the probability of walking 

from one island to another will, for most walking schemes, be very small. 

For reasonable values of N one might very well just walk around on only 

one island, and if the function f varied significantly from island to 

island erroneous results would obviously be obtained.  Unfortunately, one 

is rarely able to definitely rule out this possibility in any specific 

calculation. 

The steady state condition (B) can usually be satisfied rather easily. 

Notice first of all that condition (1.12) depends only on the relative 

magnitudes of the state probabilities TT ; furthermore, it is seen from 

(1.3) that the probabilities TT themselves depend only on the relative 
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magnitudes of the density function P at various discrete states. Conse- 

quently we can always write TT simply as P{?.) in any conveniently 

unnormalized form, and thereby avoid the (usually impossible) tasks of 

(i) evaluating the normalization constant for the density function P(x), 

and (ii) evaluating the normalizing denominator in (1.3) for TT . 

One way of setting up a one-step matrix £ which satisfies the steady 

state condition (B) Is as follows: Let p.. be any set of one-step 

probabilities which satisfies, in addition to the usual conditions 

(T.6) and (1.7), the condition 

PiJ " P3i 
(1.16) 

[It is usually easy to set up such a symmetric one-step probability 

it 
matrix £ in any specific application.] We then define P in terms of 

J? and £ according to 

r * 

(i^j):       P^ = \ 
pii,7VV    if ^V1 

* p ,    if W /TT^I 

Pii = 4 +   i p^-vv 
(YV 

(1.17) 

It is not difficult to show that this set p.. satisfies (1.6), (1.7) 

and (i.12) [see p. 119 of Ref. 1 for a proof]. We might note that the 

satisfaction of the steady state condition (1.12) essentially results 

from the fact that (1.17) is so constructed that 
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! Vij = ^Pji (I-18) 

From this it follows, using (1.7), that 

D D D 

£ Vij = J/jPji" wj J Pji = ^j 
i«]   J  i=l J J    Ji=l J    J 

which is just (1.12). We should remark that (1.17) is not the only 

scheme for constructing P so that (1.18) is satisfied; furthermore, (1.18) 

itself is not a necessary condition for satisfying the steady state 

condition (1.12). 

To actually realize a Markov chain according to (1.17), suppose the 

t  state of the Markov chain is x. and we wish to determine the (t+1) 

state. First, we pick a tentative state x. according to p. , and we 

calculate the probability ratio TT./TT. for these two states.  If 

TT./TT >1, we take x. to be the (t+1)  state of the Markov chain.  If 

T; /7T.<1, we pick a random number r from the uniform distribution in the 

unit interval, and we compare TT
./''

!
J with r; if TT./TT >r we take "x. as 

the (t+1)  state, but if TT./TT <r we take*?, as the (t+1)  state.  It 

is important to note that p . is usually not zero, so one should have no 

misgivings about winding up with the same state x. for both the t 

and the (t+1)  states of the chain; indeed [see p. 122 of Ref. 11], 

For the microcanonical ensemble function P(3?) mentioned just after (1.1), 

the TT /TT ratio is simply exp(-AU /kT), where AU =U(x.)-U(x,) is the 

change in the total energy of the system in going from state x, to state x. 

200 



T^>-^..,-.,. .. 

one will introduce errors if one forces a genuine change of state at 

every step of the random walk. 

For further details on applying the Markov chain Monte Carlo method to 

specific problems in statistical mechanics, the reader should consult the 

review article by Wood [Ref. 11] and references contained therein. We 

shall leave the subjec at this point with the following general comments. 

The Markov chain Monte Carlo method has shown itseii  capable of calculating 

certain kinds of integrals which cannot presently be calculated either by 

classical methods or by the conventional Monte Carlo method. However, the 

Markov chain method requires a considerable amount of care and expertise 

on the part of the user, more so than does the conventional Monte Carlo 

method. A prime source of uneasiness when using the Markov chain approach 

is that one is almost never sure to what extent the ergodic condition (A) 

is satisfied.  In addition, in view of the asymptotic nature of the result 

(1,13), one cannot help but wonder how large N will have to be in order for 

the Central Limit Theorem for Markov chains to truly govern the accuracy 

of the approximation (1,15). For these reasons (which this writer freely 

admits may be due to his own lack of experience with Markov chain calcula- 

tions) this writer is of the opinion that the Markov chain Monte Carlo 

method should be attempted only if the conventional Monte Carlo method 

is clearly inapplicable.  Others may disagree with this opinion; 

perhaps the one-dimensional gas of Impenetrable rods considered in 

Sec. 2-10 might afford a vehicle for comparing the efficiency and reliability 

of the two Monte Carlo methods. 
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